Skip to main content
Log in

Global Behavior of Compressible Navier-Stokes Equations with a Degenerate Viscosity Coefficient

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study a free boundary problem for compressible Navier-Stokes equations with density-dependent viscosity. Precisely, the viscosity coefficient μ is proportional to ρ θ with , where ρ is the density, and γ > 1 is the physical constant of polytropic gas. Under certain assumptions imposed on the initial data, we obtain the global existence and uniqueness of the weak solution, give the uniform bounds (with respect to time) of the solution and show that it converges to a stationary one as time tends to infinity. Moreover, we estimate the stabilization rate in L norm, (weighted) L 2 norm and weighted H 1 norm of the solution as time tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fang, D., Zhang, T.: A note on compressible Navier-Stokes equations with vacuum state in one dimension. Nonlinear Anal. 58, 719–731 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fang, D., Zhang, T.: Compressible Navier-Stokes equations with vacuum state in one dimension. Commun. Pure Appl. Anal. 3, 675–694 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fang, D., Zhang, T.: Discontinuous solutions of the compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. J. Math. Anal. Appl. 318, 224–245 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fang, D., Zhang, T.: Global solutions of the Navier-Stokes equations for compressible flow with density-dependent viscosity and discontinuous initial data. J. Differential Equations, 222, 63–94 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fang, D., Zhang, T.: Compressible Navier-Stokes equations with vacuum state in the case of general pressure law. Math. Methods Appl. Sci. in press

  6. Grad, H.: Asymptotic theory of the Boltzmann equation II. Rarefied Gas Dynamics 1 (Ed. Laurmann, J.). Academic Press, New York, pp. 26–59, 1963

  7. Hoff, D., Serre, D.: The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J. Appl. Math. 51, 887–898 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Liu, T.P., Xin, Z., Yang, T.: Vacuum states of compressible flow. Discrete Contin. Dyn. Sys. 4, 1–32 (1998)

    MATH  Google Scholar 

  9. Luo, T., Xin, Z., Yang, T.: Interface behavior of compressible Navier-Stokes equations with Vacuum. SIAM J. Math. Anal. 31, 1175–1191 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Matsumura, A., Yanagi, S.: Uniform boundedness of the solutions for a one-dimensional isentropic model system of a compressible viscous gas. Comm. Math. Phys. 175, 259–274 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Mucha, P.: Compressible Navier-Stokes system in 1-D. Math. Methods Appl. Sci. 24, 607–622 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Okada, M.: Free boundary value problems for the equation of one-dimensional motion of viscous gas. Japan J. Appl. Math. 6, 161–177 (1989)

    MATH  MathSciNet  Google Scholar 

  13. Okada, M., Makino, T.: Free boundary value problems for the equation of spherically symmetrical motion of viscous gas. Japan J. Appl. Math. 10, 219–235 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Okada, M., Matusu-Necasová, S., Makino, T.: Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann. Univ. Ferrara Sez. VII (N.S.) 48, 1–20 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Okada, M.: Free boundary problem for one-dimensional motions of compressible gas and vacuum. Japan J. Indust. Appl. Math. 21, 109–128 (2004)

    MATH  MathSciNet  Google Scholar 

  16. Straskraba, I., Zlotnik, A.: Global behavior of 1d-viscous compressible barotropic fluid with a free boundary and large data. J. Math. Fluid Mech. 5, 119–143 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  17. Vong, S.W., Yang, T., Zhu, C.J.: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II). J. Differential Equations, 192, 475–501 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Xin, Z.: Blow-up of smooth solution to the compressible Navier-Stokes equations with compact density. Comm. Pure Appl. Math. 51, 229–240 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yang, T., Yao, Z.A., Zhu, C.J.: Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Comm. Partial Differential Equations 26, 965–981 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Yang, T., Zhao, H.J.: A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity. J. Differential Equations 184, 163–184 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yang, T., Zhu, C.J.: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Comm. Math. Phys. 230, 329–363 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhang.

Additional information

Communicated by T-P Liu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Fang, D. Global Behavior of Compressible Navier-Stokes Equations with a Degenerate Viscosity Coefficient. Arch Rational Mech Anal 182, 223–253 (2006). https://doi.org/10.1007/s00205-006-0425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-006-0425-6

Keywords

Navigation