Skip to main content
Log in

Uniform Regularity for the Navier–Stokes Equation with Navier Boundary Condition

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove that there exists an interval of time which is uniform in the vanishing viscosity limit and for which the Navier–Stokes equation with the Navier boundary condition has a strong solution. This solution is uniformly bounded in a conormal Sobolev space and has only one normal derivative bounded in L . This allows us to obtain the vanishing viscosity limit to the incompressible Euler system from a strong compactness argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bardos C.: Existence et unicité de la solution de l’équation d’Euler en dimension deux. J. Math. Anal. Appl. 40, 769–790 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Bardos C., Rauch J.: Maximal positive boundary value problems as limits of singular perturbation problems. Trans. Am. Math. Soc. 270(2), 377–408 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Basson A., Gérard-Varet D.: Wall laws for fluid flows at a boundary with random roughness. Commun. Pure Appl. Math. 61(7), 941–987 (2008)

    Article  MATH  Google Scholar 

  • Beirão da Veiga H.: Vorticity and regularity for flows under the Navier boundary condition. Commun. Pure Appl. Anal. 5(4), 907–918 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Beirão da Veiga H., Crispo F.: Concerning the W k,p-inviscid limit for 3-d flows under a slip boundary condition. J. Math. Fluid Mech. 13, 117–135 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  • Clopeau T., Mikelić A., Robert R.: On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equations with the friction type boundary conditions. Nonlinearity 11(6), 1625–1636 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gérard-Varet D., Masmoudi N.: Relevance of the slip condition for fluid flows near an irregular boundary. Commun. Math. Phys. 295(1), 99–137 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gisclon M., Serre D.: Étude des conditions aux limites pour un système strictement hyberbolique via l’approximation parabolique. C. R. Acad. Sci. Paris Sér. I Math. 319(4), 377–382 (1994)

    MathSciNet  MATH  Google Scholar 

  • Grenier E., Guès O.: Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differ. Equ. 143(1), 110–146 (1998)

    Article  MATH  Google Scholar 

  • Grenier E., Masmoudi N.: Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differ. Equ. 22(5–6), 953–975 (1997)

    MathSciNet  MATH  Google Scholar 

  • Grenier E., Rousset F.: Stability of one-dimensional boundary layers by using Green’s functions. Commun. Pure Appl. Math. 54(11), 1343–1385 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Guès O.: Problème mixte hyperbolique quasi-linéaire caractéristique. Commun. Partial Differ. Equ. 15(5), 595–645 (1990)

    Article  MATH  Google Scholar 

  • Hörmander L.: Pseudo-differential operators and non-elliptic boundary problems. Ann. Math. 83(2), 129–209 (1966)

    Article  MATH  Google Scholar 

  • Iftimie D., Planas G.: Inviscid limits for the Navier–Stokes equations with Navier friction boundary conditions. Nonlinearity 19(4), 899–918 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Iftimie D., Sueur F.: Viscous boundary layers for the Navier–Stokes equations with the navier slip conditions. Arch. Rational Mech. Anal. 199, 145–175 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Jang J., Masmoudi N.: Well-posedness for compressible Euler equations with physical vacuum singularity. Commun. Pure Appl. Math. 62(10), 1327–1385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Kato T.: Nonstationary flows of viscous and ideal fluids in R 3. J. Funct. Anal. 9, 296–305 (1972)

    Article  MATH  Google Scholar 

  • Kato, T.: Remarks on the Euler and Navier–Stokes equations in R 2. In: Nonlinear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983). Amer. Math. Soc., Providence, R.I., pp. 1–7, 1986

  • Kelliher J.P.: Navier–Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal. 38(1), 210–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Klainerman S., Majda A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34(4), 481–524 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lions, P.-L.: Mathematical Topics in Fluid Mechanics, Vol. 1. The Clarendon Press, Oxford University Press, New York. Incompressible Models. Oxford Science Publications, 1996

  • Masmoudi N.: The Euler limit of the Navier–Stokes equations, and rotating fluids with boundary. Arch. Rational Mech. Anal. 142(4), 375–394 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Masmoudi N.: Ekman layers of rotating fluids: the case of general initial data. Commun. Pure Appl. Math. 53(4), 432–483 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Masmoudi N.: Examples of singular limits in hydrodynamics. In: Evolutionary Equations, Vol. III. Handb. Differ. Equ. Elsevier/North-Holland, Amsterdam, 195–276, 2007

  • Masmoudi N.: Remarks about the inviscid limit of the Navier–Stokes system. Commun. Math. Phys. 270(3), 777–788 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Masmoudi N., Rousset F.: Stability of oscillating boundary layers in rotating fluids. Ann. Sci. Éc. Norm. Supér. (4) 41(6), 955–1002 (2008)

    MathSciNet  MATH  Google Scholar 

  • Masmoudi N., Saint-Raymond L.: From the Boltzmann equation to the Stokes-Fourier system in a bounded domain. Commun. Pure Appl. Math. 56(9), 1263–1293 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Métivier G., Schochet S.: The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal. 158(1), 61–90 (2001)

    Article  ADS  MATH  Google Scholar 

  • Métivier, G., Zumbrun, K.: Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Am. Math. Soc. 175, 826, vi+107 (2005)

    Google Scholar 

  • Rousset F.: Stability of large Ekman boundary layers in rotating fluids. Arch. Rational Mech. Anal. 172(2), 213–245 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Rousset F.: Characteristic boundary layers in real vanishing viscosity limits. J. Differ. Equ. 210(1), 25–64 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Saint-Raymond L.: Weak compactness methods for singular penalization problems with boundary layers. SIAM J. Math. Anal. 41(1), 153–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Sammartino M., Caflisch R.E.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space, I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Swann H.S.G.: The convergence with vanishing viscosity of nonstationary Navier–Stokes flow to ideal flow in R 3. Trans. Am. Math. Soc. 157, 373–397 (1971)

    MathSciNet  MATH  Google Scholar 

  • Tartakoff D.S.: Regularity of solutions to boundary value problems for first order systems. Indiana Univ. Math. J. 21, 1113–1129 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Temam R.: On the Euler equations of incompressible perfect fluids. J. Funct. Anal. 20(1), 32–43 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Temam R., Wang X.: Boundary layers associated with incompressible Navier–Stokes equations: the noncharacteristic boundary case. J. Differ. Equ. 179(2), 647–686 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao Y., Xin Z.: On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition. Commun. Pure Appl. Math. 60(7), 1027–1055 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Masmoudi.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masmoudi, N., Rousset, F. Uniform Regularity for the Navier–Stokes Equation with Navier Boundary Condition. Arch Rational Mech Anal 203, 529–575 (2012). https://doi.org/10.1007/s00205-011-0456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0456-5

Keywords

Navigation