Skip to main content
Log in

Confocal observations of late-acting self-incompatibility in Theobroma cacao L.

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Cocoa (Theobroma cacao) has an idiosyncratic form of late-acting self-incompatibility that operates through the non-fusion of incompatible gametes. Here, we used high-resolution confocal microscopy to define fine level changes to the embryo sac of the strongly self-incompatible cocoa genotype SCA 24 in the absence of pollination, and following compatible and incompatible pollination. All sperm nuclei had fused with the female nuclei by 48 h following compatible pollinations. However, following incompatible pollinations, we observed divergence in the behaviour of sperm nuclei following release into the embryo sac. Incomplete sperm nucleus migration occurred in approximately half of the embryo sacs, where the sperm nuclei had so far failed to reach the female gamete nuclei. Sperm nuclei reached but did not fuse with the female gamete nuclei in the residual cases. We argue that the cellular mechanisms governing sperm nucleus migration to the egg nucleus and those controlling subsequent nuclear fusion are likely to differ and should be considered independently. Accordingly, we recommend that future efforts to characterise the genetic basis of LSI in cocoa should take care to differentiate between these two events, both of which contribute to failed karyogamy. Implications of these results for continuing efforts to gain better understanding of the genetic control of LSI in cocoa are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen AM, Hiscock SJ (2008) Evolution and phylogeny of self-incompatibility systems in angiosperms. In: Franklin-Tong VE (ed) Self-incompatibility in flowering plants—evolution, diversity and mechanisms. Springer, Berlin, pp 73–101

    Chapter  Google Scholar 

  • Alverson WS, Karol KG, Baum DA, Chase MW, Swensen SM, McCourt R, Sytsma KJ (1998) Circumscription of the Malvales and relationships to the other Rosidae: evidence from rbcL sequence data. Am J Bot 85:876–887

    Article  PubMed  CAS  Google Scholar 

  • Aneja M, Gianfagna T, Ng E (1999) The roles of abscisic acid and ethylene in the abscission and senescence of cocoa flowers. Plant Growth Regul 27:149–155

    Article  CAS  Google Scholar 

  • Baker RP, Hasenstein KH, Zavada MS (1997) Hormonal changes after compatible and incompatible pollination in Theobroma cacao L. HortSci 32:1231–1234

    CAS  Google Scholar 

  • Beardsell DV, Knox RB, Williams EG (1993) Breeding system and reproductive success of Thryptomene calycina (Myrtaceae). Aust J Bot 41:333–353

    Article  Google Scholar 

  • Bennett MC, Cope FW (1959) Nuclear fusion and non-fusion in Theobroma cacao L. Nature 183:1540

    Article  PubMed  CAS  Google Scholar 

  • Berger F (2011) Imaging fertilization in flowering plants, not so abominable after all. J Exp Bot 62:1651–1658

    Article  PubMed  CAS  Google Scholar 

  • Bouharmont J (1960) Recherches cytologiques sur la fructification et l’incompatibilité chez Theobroma cacao L. Publication de l’Institut National pour l’Étude Agronomique du Congo, Série Scientifique No. 89

  • Braselton JP, Wilkinson MJ, Clulow SA (1996) Feulgen staining of intact plant tissues for confocal microscopy. Biotech Histochem 71:84–87

    Article  PubMed  CAS  Google Scholar 

  • Cheesman EE (1927) Fertilisation and embryogeny in Theobroma cacao, L. Ann Bot 41:107–126

    Google Scholar 

  • Cheesman EE (1932) The economic botany of cacao: a critical survey of the literature to the end of 1930. Trop Agric S9:1–16

    Google Scholar 

  • Cope FW (1939) Studies in the mechanism of self-incompatibility in cacao I. Eighth Annual Report on Cocoa Research, Trinidad, pp 20–21

    Google Scholar 

  • Cope FW (1940) Studies in the mechanism of self-incompatibility in cacao II. Ninth Annual Report of Cocoa Research, Trinidad, pp 19–23

    Google Scholar 

  • Cope FW (1958) Incompatibility in Theobroma cacao. Nature 181:279

    Article  Google Scholar 

  • Cope FW (1962) The mechanism of pollen incompatibility in Theobroma cacao L. Heredity 17:157–182

    Article  Google Scholar 

  • de Sousa MS, Venturieri GA (2010) Floral biology of cacauhy (Theobroma speciosum—Malvaceae). Braz Arch Biol Technol 53:861–872

    Article  Google Scholar 

  • Efombagn MIB, Sounigo O, Eskes AB, Motamajor JC, Manzanares-Dauleux MJ, Schnell R (2009) Parentage analysis and outcrossing patterns in cacao (Theobroma cacao L.) farms in Cameroon. Heredity 103:46–53

    Article  PubMed  CAS  Google Scholar 

  • Era A, Tominaga M, Ebine K, Awai C, Saito C, Ishizaki K, Yamato KT, Kohchi T, Nakano A, Ueda T (2009) Application of Lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. Plant Cell Physiol 50:1041–1048

    Article  PubMed  CAS  Google Scholar 

  • Faure J-E, Digonnet C, Dumas C (1994) An in vitro fusion system of adhesion and fusion in maize gametes. Science 263:1598–1600

    Article  PubMed  CAS  Google Scholar 

  • Friedman WE (1999) Expression of the cell cycle in sperm of Arabidopsis: implications for understanding patterns of gametogenesis and fertilization in plants and other eukaryotes. Development 126:1065–1075

    PubMed  CAS  Google Scholar 

  • Fu Y, Yuan M, Huang BQ, Yang HY, Zee SY, Tp OB (2000) Changes in actin organization in the living egg apparatus of Torenia fournieri during fertilization. Sex Plant Reprod 12:315–322

    Article  CAS  Google Scholar 

  • Gibbs PE, Bianchi M (1993) Post-pollination events in species of Chorisia (Bombacaceae) and Tabebuia (Bignoniaceae) with late-acting self-incompatibility. Bot Acta 106:64–71

    Google Scholar 

  • Gibbs PE, Bianchi M (1999) Does late-acting self-incompatibility (LSI) show family clustering? Two more species of Bignoniaceae with LSI: Dolichandra cynanchoides and Tabebuia nodosa. Ann Bot 84:449–457

    Article  Google Scholar 

  • Gigord L, Lavigne C, Shykoff JA (1998) Partial self-incompatibility and inbreeding depression in a native tree species of La Réunion (Indian Ocean). Oecologia 117:342–352

    Article  Google Scholar 

  • Gribel R, Gibbs PE (2002) High outbreeding as a consequence of selfed ovule mortality and single vector bat pollination in the Amazonian tree Pseudobombax munguba (Bombacaceae). Int J Plant Sci 163:1035–1043

    Article  Google Scholar 

  • Gribel R, Gibbs PE, Queiros AL (1999) Flowering phenology and pollination biology of Ceiba pentandra (Bombacaceae) in Central Amazonia. J Trop Ecol 15:247–263

    Article  Google Scholar 

  • Hamamura Y, Saito C, Awai C, Kurihara D, Miyawaki A, Nakagawa T, Kanaoka MM, Sasaki N, Nakano A, Berger F, Higashiyama T (2011) Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. Curr Biol 21:497–502

    Article  PubMed  CAS  Google Scholar 

  • Hasenstein KH, Zavada MS (2001) Auxin modification of the incompatibility response in Theobroma cacao. Physiol Plant 112:113–118

    Article  PubMed  CAS  Google Scholar 

  • Huang BQ, Russell SD (1994) Fertilisation in Nicotiana tabacum: cytoskeletal modification in the embryo sac during synergid degradation. A hypothesis for short-distance transport of sperm cells prior to gamete fusion. Planta 194:200–214

    Article  CAS  Google Scholar 

  • Jacob VJ (1973) Self-incompatibility mechanism in Cola nitida. Incompat Newsl 3:60–61

    Google Scholar 

  • Jensen WA (1965) The ultrastructure and histochemistry of the synergids of cotton. Am J Bot 52:238–256

    Article  PubMed  CAS  Google Scholar 

  • Jensen WA, Fisher DB (1968) Cotton embryogenesis: the entrance and discharge of the pollen tube in the embryo sac. Planta 78:158–183

    Article  Google Scholar 

  • Kawagoe T, Suzuki N (2005) Self-pollen on a stigma interferes with outcrosses seed production in a self-incompatible monoecious plant, Akebia quinata (Lardizabalaceae). Funct Ecol 19:49–54

    Article  Google Scholar 

  • Knight R, Rogers HH (1953) Sterility in Theobroma cacao L. Nature 172:164

    Article  PubMed  CAS  Google Scholar 

  • Knight R, Rogers HH (1955) Incompatibility in Theobroma cacao. Heredity 9:69–77

    Article  Google Scholar 

  • Knox RB, Williams EB, Dumas C (1986) Pollen, pistil and reproductive function in crops plants. Plant Breed Rev 4:9–73

    Google Scholar 

  • LaDoux T, Friar EA (2006) Late-acting self-incompatibility in Ipomopsis tenuifolia (Gray) V. Grant (Polemoniaceae). Int J Plant Sci 167:463–471

    Article  Google Scholar 

  • Lanaud C, Sounigo O, Amefia YK, Paulin D, Lachenaud P, Clément D (1987) Nouvelles données sur le fontionnement du système d’incompatibilité du cacaoyer et ses consequences pour la selection. Café Cacao Thé 31:267–277

    Google Scholar 

  • Lockwood G (1979) Cocoa breeding in Ghana with reference to swollen shoot disease. 7th International Cocoa Research Conference, Douala, Cameroon, pp 407–413

  • McKay JW (1942) Self-sterility in the chinese chestnut (Castanea mollissima). Proc Am Soc Hort Sci 41:156–160

    Google Scholar 

  • Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2006) Generative cell specific 1 is essential for angiosperm fertilization. Nat Cell Biol 8:64–71

    Article  PubMed  CAS  Google Scholar 

  • Navashin SG (1898) Resultate einer Revision der Befruchtungsvorgange bei Lilium martagon und Fritillaria tenella. Bull Acad Sci St. Petersburg 9:377–382

    Google Scholar 

  • Oh SA, Pal MD, Park SK, Johnson JA, Twell D (2010) The tobacco MAP215/Dis1 family protein TMB200 is required for the functional organisation of microtubule arrays during male germline establishment. J Exp Bot 61:969–981

    Article  PubMed  CAS  Google Scholar 

  • Oliveira PE, Gibbs PE (2000) Reproductive biology of woody plants in a cerrado community of Central Brazil. Flora 195:311–329

    Google Scholar 

  • Pound FJ (1932) Studies of fruitfulness in cacao II. Evidence for partial self-sterility. First Annual Report on Cocoa Research, Trinidad, pp 24–28

    Google Scholar 

  • Ramos AR, Venturieri GA, Cuco SM, Castro NM (2005) The site of self-incompatibility in cupuassu (Theobroma grandiflorum). Rev Bras Bot 28:569–578

    Article  Google Scholar 

  • Reyes EH (1979) Mejoramiento genetic del cacao en Venezuela. 7th International cocoa research conference, Douala, Cameroon, pp 513–518

  • Sage TL, Sampson FB (2003) Evidence for ovarian self-incompatibility as a cause of self-sterility in the relictual woody angiosperm Pseudowintera axillaris (Winteraceae). Ann Bot 91:807–816

    Article  PubMed  Google Scholar 

  • Sage TL, Williams EG (1991) Self-incompatibility in Asclepias. Plant Cell Incomp Newsl 23:55–57

    Google Scholar 

  • Sage TL, Bertin TI, Williams EG (1994) Ovarian and other late-acting self-incompatibility systems. In: Williams EG, Clark AE, Knox RB (eds) Genetic control of self-incompatibility and reproductive development in flowering plants. Kluwer Academic Publishing, Dordrecht, pp 116–140

    Google Scholar 

  • Sage TL, Strumas F, Cole WW, Barrett SCH (1999) Differential ovule development following self- and cross-pollination: the basis of self-sterility in Narcissus triandrus (Amaryllidaceae). Am J Bot 86:855–870

    Article  PubMed  CAS  Google Scholar 

  • Sauer JD (1994) Historical geography of crop plants: a select roster. CRC Press, Boca Raton

    Google Scholar 

  • Seavey SR, Bawa KS (1986) Late-acting self-incompatibility in angiosperms. Bot Rev 52:195–219

    Article  Google Scholar 

  • Soria VJ (1978) The breeding of cacao (Theobroma cacao L.). Trop Agric Res Ser 11:161–168

    Google Scholar 

  • Taroda N, Gibbs PE (1982) Floral biology and breeding system of Sterculia chicha St. Hil (Sterculiaceae). New Phytol 90:342–743

    Article  Google Scholar 

  • Turnbull CJ, Hadley P (2011) International cocoa germplasm database (ICGD) online database. http://www.icgd.reading.ac.uk. Accessed 15th July 2011

  • Vaughton G, Ramsey M, Johnson SD (2010) Pollination and late-acting self-incompatibility in Cyrtanthus breviflorus (Amaryllidaceae): implications for seed production. Ann Bot 106:547–555

    Article  PubMed  Google Scholar 

  • von Besser K, Frank AC, Johnson MA, Preuss D (2006) Arabidopsis HAP2 (GCS1) is a sperm specific gene required for pollen tube guidance and fertilization. Development 133:4761–4769

    Article  Google Scholar 

  • Williams EG, Kaul V, Rouse JL, Knox RB (1984) Apparent self-incompatibility in Rhododendron ellipticum, R. championae and R. amamiense: a post-zygotic mechanism. Plant Cell Incomp Newsl 16:10–11

    Google Scholar 

  • Xu H, Swoboda I, Bhalla PL, Singh MB (1999) Male gametic cell-specific gene expression in flowering plants. Proc Nat Acad Sci USA 96:2554–2558

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Biscuit, Cake, Chocolate and Confectionary Alliance (now Cocoa Research Association) of the UK and was conducted at the Department of Biological Sciences, University of Reading, UK. Many thanks to Professor Paul Hadley and Mr. Stephen Poutney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike J. Wilkinson.

Additional information

Communicated by Tetsuya Higashiyama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

497_2012_188_MOESM1_ESM.pdf

Table of pollination screen results, and three additional figures of ovules following compatible and incompatible pollination at 48-96 h after pollination (PDF 562 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ford, C.S., Wilkinson, M.J. Confocal observations of late-acting self-incompatibility in Theobroma cacao L.. Sex Plant Reprod 25, 169–183 (2012). https://doi.org/10.1007/s00497-012-0188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-012-0188-1

Keywords

Navigation