Skip to main content

Evolution and Phylogeny of Self-Incompatibility Systems in Angiosperms

  • Chapter
Self-Incompatibility in Flowering Plants

Abstract

The evolution of self-incompatibility (SI) has been debated since its genetic bases were first fully described over half a century ago. The diversity of SI systems and their scattered distribution among different flowering plant lineages suggest that SI has evolved independently on many different occasions. Recent advances in our understanding of the evolutionary relationships among angiosperms together with a growing understanding of the genetic, cellular, and molecular control of SI systems have now allowed objective insights to be made into the evolution of SI. Mapping the presence of the various SI systems within robust angiosperm phylogenies allows us to view the phylogenetic distribution of SI as a whole, and compare the distribution and phylogenetic relationships of the different forms of SI. Here we discuss the diversity of SI systems in flowering plants and current hypotheses on their evolution and phylogenetic relationships. Using the APG II tree we map the distribution of SI and self-sterility and show: (1) Self-sterility and SI are well represented among basal angiosperm lineages, suggesting that self-sterility/SI rather than self-compatibility (SC) was the ancestral angiosperm mating system; (2) late-acting ovarian SI is the basal SI state; (3) gametophytic SI systems evolved independently in the earliest diverging angiosperm lineages; (4) heteromorphic sporophytic SI evolved on numerous different occasions in eudicots and probably only once in monocots; and (5) different forms of homomorphic sporophytic SI evolved relatively recently in eudicots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott RJ, Brennan AC, James JK, Forbes DG, Hegarty MJ, Hiscock SJ (in press) Recent hybrid origin and invasion of the British isles by a self-incompatible species, Oxford ragwort (Senecio squalidus L., Asteraceae). Biol Invasions

    Google Scholar 

  • Aguilar R, Bernardello G (2001) The breeding system of Lycium cestroides: A Solanaceae with ovarian self-incompatibility. Sex Plant Reprod 13:273-277

    Google Scholar 

  • Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classifica-tion for the orders and families of flowering plants. Bot J Linn Soc 141:399-436

    Google Scholar 

  • Annerstedt I, Lundqvist A (1967) Genetics of self-incompatibility in Tradescantia paludosa (Commelinaceae). Hereditas 58:13-30

    Google Scholar 

  • Ascher PD, Peloquin SJ (1968) Pollen tube growth and incompatibility following intra- and interspecific pollinations in Lilium longiflorum. Am J Bot 55:1230-1234

    Google Scholar 

  • Balthazar M, Endress PK (1999) Floral bract function, flowering process and breeding systems of Sarcandra and Chloranthus (Chloranthaceae). Plant Syst Evol 218:161-178

    Google Scholar 

  • Barrett SCH (1992) Heterostylous genetic polymorphisms: Model systems for evolutionary anal-ysis. In: Barrett SCH (ed) Evolution and function of heterostyly. Springer, Berlin Heidelberg New York, pp 1-29

    Google Scholar 

  • Barrett SCH (1998) The evolution of mating strategies in flowering plants. Trends Plant Sci 3:335-341

    Google Scholar 

  • Barrett SCH, Cruzan MB (1994) Incompatibility in heterostylous plants. In: Williams EG, Clarke AE, Knox RB (eds) Advances in cellular and molecular biology of plants. Genetic con-trol of self incompatibility and reproductive development in flowering plants, vol 2. Kluwer, Dordrecht, pp 189-219

    Google Scholar 

  • Barrett SCH, Harder LD (2005) The evolution of polymorphic sexual systems in daffodils (Narcissus). New Phytol 165:45-53

    PubMed  Google Scholar 

  • Barrett SCH, Harder LD, Worley AC (1996) The comparative biology of pollination and mating in flowering plants. Phil Trans R Soc Lond B 351:1271-1280

    Google Scholar 

  • Bateman AJ (1952) Self-incompatibility in angiosperms: I. Theory. Heredity 6:285-310

    Google Scholar 

  • Bernhardt P, Thien LB (1987) Self-isolation and insect pollination in the primitive angiosperms: New evaluations of older hypotheses. Plant Syst Evol 156:159-176

    Google Scholar 

  • Bernhardt P, Sage TL, Weston P, Azuma H, Lam M, Thien LB, Bruhl J (2003) The pollination of Trimenia moorei (Trimeniaceae): Floral volatiles, insect/wind pollen vectors, and stigmatic self-incompatiblity in a basal angiosperm. Ann Bot 92:1-14

    Google Scholar 

  • Bianchi M, Vesprini J, Barrett SCH (2000) Trimorphic incompatibility in Eichhornia azurea (Pontederiaceae). Sex Plant Reprod 12:203-208

    Google Scholar 

  • Borba EL, Semir JO, Shepherd GJ (2001) Self-incompatibility, Inbreeding Depression and Crossing Potential in Five Brazilian Pleurothallis (Orchidaceae) Species. Ann. Bot 88:89-99

    Google Scholar 

  • Bowman RN (1987) Cryptic Self-Incompatibility and the Breeding System of Clarkia unguiculata (Onagraceae). Am J Bot 74:471-476

    Google Scholar 

  • Boyes DC, Chen C, Tantikanjana T, Esch JJ, Nasrallah JB (1991) Isolation of a second S-locus-related cDNA from Brassica oleracea: Genetic relationships between the S-locus and two related loci. Genetics 127:221-228

    CAS  PubMed  Google Scholar 

  • Brennan AC, Harris SA, Hiscock SJ (2003) Population genetics of sporophytic self incompatibil-ity in Senecio squalidus L. (Asteraceae) II: A spatial autocorrelation approach to determining mating behaviour in the presence of low S-allele diversity. Heredity 91:502-509

    CAS  PubMed  Google Scholar 

  • Brewbaker, JL (1957) Pollen cytology and self-incompatibility systems in plants. J Hered 48:271-277

    Google Scholar 

  • Charlesworth D (1985) Distribution of dioecy and self-incompatibility in angiosperms. In: Green-wood J, Slatkin M (eds) Evolution - essays in honour of John Maynard Smith. Cambridge University Press, Cambridge, pp 237-268

    Google Scholar 

  • Charlesworth D, Vekemans X, Castric V, Glémin S (2005) Plant self-incompatibility systems: A molecular evolutionary perspective. New Phytol 168:61-69

    CAS  PubMed  Google Scholar 

  • Cock JM, Swarup R, Dumas C (1997) Natural antisense transcripts of the S-locus receptor kinase gene and related sequences in Brassica oleracea. Mol Gen Genet 255:514-524

    CAS  PubMed  Google Scholar 

  • Cope FW (1958) Incompatibility in Theobroma cacao. Nature 181:279

    Google Scholar 

  • Cope FW (1962) The mechanism of pollen incompatibility in Theobroma cacao. Heredity 17:157-182

    Google Scholar 

  • Crane PR, Lidgard S (1989) Angiosperm diversification and paleolatitudinal gradients in creta-ceous floristic diversity. Science 246:675-678

    PubMed  Google Scholar 

  • Crepet WL (1985) Advanced (constant) insect pollination mechanisms: Patterns of evolution and implications vis-à-vis angiosperm diversity. Ann Mo Bot Gard 71:607-630

    Google Scholar 

  • Darwin (1862) On the two forms, or dimorphic condition, in the species of Primula and on their remarkable sexual relation. J Linn Soc Bot 6:77-96

    Google Scholar 

  • de Nettancourt D (1977) Incompatibility in angiosperms. Springer, Berlin Heidelberg New York

    Google Scholar 

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dickinson H (1995) Dry stigmas, water and self-incompatibility. Sex Plant Reprod 8:1-10

    Google Scholar 

  • do Rêgo MM, Bruckner CH, da Silva EAM, Finger FL, de Siqueira DL, Fernandes AA (1999) Self-incompatibility in passion fruit: Evidence of two locus genetic control. Theor Appl Genet 98:564-568

    Google Scholar 

  • Dorken ME, Husband BC (1999) Self-Sterility in the Understory Herb Clintonia borealis (Lili-aceae). Int J Plant Sci 160:577-584

    Google Scholar 

  • East EM (1940) The distribution of self-sterility in the flowering plants. Proc Am Philos Soc 82:449-518

    Google Scholar 

  • Elleman CJ, Dickinson HG (1999) Commonalities between pollen/stigma and host/pathogen inter-actions: Calcium accumulation during stigmatic penetration by Brassica oleracea pollen tubes. Sex Plant Reprod 12:194-202

    CAS  Google Scholar 

  • Endress PK (2001) The Flowers in Extant Basal Angiosperms and Inferences on Ancestral Flowers. Int J Plant Sci 162:1111-1140

    Google Scholar 

  • Endress PK, Igersheim A (2000) Gynoecium Structure and Evolution in Basal Angiosperms. Int J Plant Sci 161:S211-S223

    Google Scholar 

  • Ferrer MM, Good-Avila SV (2007) Macrophylogenetic analyses of the gain and loss of self-incompatibility in the Asteraceae. New Phytol 173:401-414

    PubMed  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2000) Reproductive structure and organization of basal Angiosperms from the early Cretaceous (barremian or aptian) of western Portugal. Int J Plant Sci 161:S169-S182

    Google Scholar 

  • Galen C, Gregory T, Galloway LF (1989) Costs of self pollination in a self-incompatible plant, Polemonium viscosum. Am J Bot 76:1675-1680

    Google Scholar 

  • Gibbs PE (1986) Do Homomorphic and Heteromorphic Self-Incompatibility Systems Have the Same Sporophytic Mechanism? Plant Syst Evol 154:285-323

    Google Scholar 

  • Gibbs PE, Bianchi MB (1999) Does Late-acting Self-incompatibility (LSI) Show Family Cluster-ing? Two More Species of Bignoniaceae with LSI: Dolichandra cynanchoides and Tabebuia nodosa. Ann Bot 84:449-457

    Google Scholar 

  • Gibson JP, Wheelright NT (1996) Mating systems of Ocotea tenera (Lauraceae), a gynodioecious tropical tree. Am J Bot 83:890-894

    Google Scholar 

  • Good-Avila SV, Stephenson AG. (2002) The inheritance of modifiers conferring self-fertility in the partially self-incompatible perennial, Campanula rapunculoides L. (Campanulaceae). Evolution 56:263-272

    PubMed  Google Scholar 

  • Goodwillie C (1997) The genetic control of self-incompatibility in Linanthus parviflorus (Polemo-niaceae). Heredity 79:424-432

    Google Scholar 

  • Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst 36:47-79

    Google Scholar 

  • Hagman M (1975) Incompatibility in forest trees. Proc R Soc Lond B 188:313-326

    Google Scholar 

  • Hasenstein KH, Zavada MS (2001) Auxin modification of the incompatibility response in Theobroma cacao. Physiol Plant 112:113-118

    CAS  PubMed  Google Scholar 

  • Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ (2006) Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Current Biol 16:1652-1659

    CAS  Google Scholar 

  • Heslop-Harrison Y (1975) Incompatibility and the pollen stigma interaction. Annu Rev Plant Physiol 26:403-425

    CAS  Google Scholar 

  • Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the Angiosperm stigma. Ann. Bot. 41:1233-1258

    Google Scholar 

  • Hiratsuka S, Tezuka T, Yamamoto Y (1983) Use of longitudinally bisected pistils of Lilium longiflorum for studies on self-incompatibility. Plant Cell Physiol 24:765-768

    Google Scholar 

  • Hiscock SJ (2000) Self-incompatibility in Senecio squalidus L. (Asteraceae). Ann Bot 85:181-190

    CAS  Google Scholar 

  • Hiscock SJ, Dickinson HG (1993) Unilateral incompatibility within the Brassicaceae: Further evidence for the involvement of the self-incompatibility S-locus. Theor Appl Genet 86:744-753

    Google Scholar 

  • Hiscock SJ, Kues U (1999) Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. Int Rev Cytol 193:165-295

    CAS  PubMed  Google Scholar 

  • Hiscock SJ, McInnis SM (2003) The diversity of self-incompatibility systems in flowering plants. Plant Biol 5:23-32

    CAS  Google Scholar 

  • Hiscock SJ, Tabah DA (2003) The different mechanisms of sporophytic self-incompatibility. Phil Trans R Soc Lond B 358:1037-1045

    CAS  Google Scholar 

  • Hiscock SJ, Hoedemaekers K, Friedman WE, Dickinson HG (2002) The stigma surface and pollen-stigma interactions in Senecio squalidus L. (Asteraceae) following cross (compatible) and self (incompatible) pollinations. Int J Plant Sci 163:1-16

    Google Scholar 

  • Hiscock SJ, McInnis SM, Tabah DA, Henderson CA, Brennan AC (2003) Sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae) - the search for S. J Exp Bot 54:169-174

    CAS  PubMed  Google Scholar 

  • Hodgins KA, Barrett SCH (2006) Mating patterns and demography in the tristylous daffodil Narcissus triandrus. Heredity 96:262-270

    CAS  PubMed  Google Scholar 

  • Hodgins KA, Barrett SCH (2007) Population structure and genetic diversity in tristylous Narcissus triandrus: Insights from microsatellite and chloroplast DNA variation. Mol Ecol 16:2317-2332

    CAS  PubMed  Google Scholar 

  • Hodgkin T, Lyon GD, Dickinson HG (1988) Recognition in Flowering Plants: A Comparison of the Brassica Self-Incompatibility System and Plant Pathogen Interactions. New Phytol 110:557-569

    Google Scholar 

  • Hristova K, Lam M, Feild T, Sage TL (2005) Transmitting tissue ECM distribution and com-position, and pollen germinability in Sarcandra glabra and Chloranthus japonicus (Chloran-thaceae). Ann Bot 96:779-791

    CAS  PubMed  Google Scholar 

  • Igic B, Kohn JR (2001) Evolutionary relationships among self incompatibility RNases. Proc Natl Acad Sci USA 98:13167-13171

    CAS  PubMed  Google Scholar 

  • Kao TH, McCubbin AG (1996). How flowering plants discriminate between self and non-self pollen to prevent inbreeding. Proc Natl Acad Sci USA 93:12059-12065

    CAS  PubMed  Google Scholar 

  • Kenrick J, Kaul V, Williams EG (1986) Self-incompatibility in Acacia retinodes: Site of pollen-tube arrest is the nucellus. Planta 169:245-250

    Google Scholar 

  • Knight R, Rogers HH (1955) Incompatibility in Theobroma cacao. Heredity 9:69-77

    Google Scholar 

  • Knox RB, Kenrick J (1983) Polyad function in relation to the breeding system of Acacia. In: Mulcahy DL, Ottaviano E (eds) Pollen: Biology and implications for plant breeding. Elsevier Biomedical, New York, pp 411-417

    Google Scholar 

  • Koehl V, Thien LB, Heij EG, Sage TL (2004) The causes of self-sterility in natural populations of the relictual angiosperm, Illicium floridanum (Illiciaceae). Ann Bot 94:43-50

    PubMed  Google Scholar 

  • Kowyama Y, Tsuchiya T, Kakeda K (2000) Sporophytic self-incompatibility in Ipomoea trifida, a close relative of sweet potato. Ann Bot 85:191-196

    CAS  Google Scholar 

  • LaDoux T, Friar EA (2006) Late acting self incompatibility in Ipomopsis tenuifolia (Gray) V. Grant (Polemoniaceae). Int J Plant Sci 167:463-471

    Google Scholar 

  • Larsen K (1978) Oligoallelism in the multigenic incompatibility system of Beta vulgaris L. Incompat Newslett 10:23-28

    Google Scholar 

  • Levin DA (1975) Gametophytic selection in phlox. In Mulcahy DL (ed), Gamete competition in plants and animals. North Holland, Amsterdam, Netherlands, pp 207-217

    Google Scholar 

  • Lewis D (1994) Gametophytic-sporophytic incompatibility. In: Williams EG, Clarke AE, Knox RB (eds) Advances in cellular and molecular biology of plants. Genetic control of self incom-patibility and reproductive development in flowering plants, vol 2. Kluwer, Dordrecht, pp 88-101

    Google Scholar 

  • Lewis D, Verma SC, Zuberi MI (1988) Gametophytic-sporophytic incompatibility in the Cruciferae - Raphanus sativus. Heredity 61:355-366

    Google Scholar 

  • Li X, Nicholas P, Nield J, Hayman D, Langridge P (1997) Self-incompatibility in the grasses: Evolutionary relationship of the S gene from Phalaris coerulescens to homologous sequences in other grasses. Plant Mol Biol 34:223-232

    CAS  PubMed  Google Scholar 

  • Lipow SR, Wyatt R (2000) Single Gene Control of Postzygotic Self-Incompatibility in Poke Milkweed, Asclepias exaltata L. Genetics 154:893-907

    CAS  PubMed  Google Scholar 

  • Lundqvist A (1990a) The complex S-gene system for control of self-incompatibility in the buttercup genus Ranunculus. Hereditas 113:29-46

    Google Scholar 

  • Lundqvist A. (1990b). One-locus sporophytic S-gene system with traces of gametophytic pollen control in Cerastium arvense ssp. strictum (Carophyllaceae). Hereditas 113:203-215

    Google Scholar 

  • Lundqvist A (1991) Four-locus S-gene control of self-incompatibility made probable in Lilium martagon (Liliaceae). Hereditas 114:57-63

    Google Scholar 

  • Lundqvist (1993) The self-incompatibility system in Lotus tenuis (Fabaceae). Hereditas 119:59-66

    Google Scholar 

  • Lundqvist A, Østerbye U, Larsen K, Linde-Laursen I (1973) Complex self-incompatibility systems in Ranwnculus acris L. and Beta vulgaris L. Hereditas 74:161-168

    Google Scholar 

  • Martin FW (1967) Distyly, Self-Incompatibility, and Evolution in Melochia. Evolution 21:493-499

    Google Scholar 

  • Martin G, Brommonschenkel S, Chunwongse J, Frary A, Ganal M, Spivey R, Wu T, Earle E, Tanksley S (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432-1436

    CAS  PubMed  Google Scholar 

  • Matton DP, Nass N, Clarke AE, Newbigin E (1994) Self-Incompatibility: How Plants Avoid Ilegitimate Offspring. Proc Nat Acad Sci USA 91:1992-1997

    CAS  PubMed  Google Scholar 

  • McClure BA, Franklin-Tong V (2006) Gametophytic self-incompatibility: Understanding the cellular mechanisms involved in “self ” pollen tube inhibition. Planta 224:233-245

    CAS  PubMed  Google Scholar 

  • McCubbin AG, Kao T (1999) The emerging complexity of self-incompatibility (S-) loci. Sex Plant Reprod 12:1-5

    Google Scholar 

  • McCubbin AG, Lee C, Hetrick A (2006) Identification of genes showing differential expression between morphs in developing flowers of Primula vulgaris. Sex Plant Reprod 19:63-72

    CAS  Google Scholar 

  • McWilliam JR (1959) Interspecific incompatibility in Pinus. Am J Bot 46:425-433

    Google Scholar 

  • Milijuš-Ðuki ć J, Ninkovi ć S, Radovi ć S, Maksimovi ć V, Brklja či ć J, Neškovi ć M (2004) Detec-tion of proteins possibly involved in self-incompatibility response in distylous buckwheat. Biol Plant 48:293-296

    Google Scholar 

  • Milijuš-Ðuki ć J, Radovi ć S, Maksimovi ć V (2007) Treatment of isolated pistils with protease inhibitors overcomes the self-incompatibility response in buckwheat. Arch. Biol. Sci 59:45-49

    Google Scholar 

  • Murfett J, Strabala TJ, Zurek DM, Mou B, Beecher B, McClure BA (1996) S-RNase and inter-specific pollen rejection in the genus Nicotiana: Multiple pollen-rejection pathways contribute to unilateral incompatibility between self-incompatible and self-compatible species. Plant Cell 8:943-958

    CAS  PubMed  Google Scholar 

  • Naarborg AT, Willemse MTM (1992) The ovular incompatibility system in Gasteria verrucosa. Euphytica 58:231-240

    Google Scholar 

  • Østerbye U (1977) Self-incompatibility in Ranunculus acris L.: Four loci in a German population. Hereditas 87:174-178

    Google Scholar 

  • Owens SJ (1981) Self-incompatibility in the Commelinaceae. Ann Bot 47:567-581

    Google Scholar 

  • Owens SJ, McGrath S (1984) Self-incompatibility and the pollen-stigma interaction in Trades-cantia ohiensis. Protoplasma 121:209-213

    Google Scholar 

  • Paetsch M, Mayland-Quellhorst S, Neuffer B (2006) Evolution of the self-incompatibility sys-tem in the Brassicaceae: Identification of S-locus receptor kinase (SRK) in self-incompatible Capsella grandiflora. Heredity 97:283-290

    CAS  PubMed  Google Scholar 

  • Pandey KK (1957) Genetics of incompatibility in Physalis ixocarpa Brot. A new system. Am J Bot 44:879-887

    Google Scholar 

  • Pandey KK (1960) Incompatibility in Abitulon hybridum. Am J Bot 47:877-883

    Google Scholar 

  • Pandey KK (1980) Evolution of incompatibility systems in plants: Origin of independent and complementary control of incompatibility in angiosperms. New Phytol 84:381-400

    Google Scholar 

  • Perez-Barrales R, Vargas P, Arroyo J (2006) New evidence for the Darwinian hypothesis of heterostyly: Breeding systems and pollinators in Narcissus sect. Apodanthi. New Phytol 171:553-567

    CAS  Google Scholar 

  • Pontieri V, Sage TL (1999) Evidence for stigmatic self-incompatibility, pollination induced ovule enlargement and transmitting tissue exudates in the paleoherb, Saururus cernuus L. (Saururaceae). Ann Bot 84:507-519

    Google Scholar 

  • Prakash N, Alexander JH (1984) Self-incompatibility in Austrobaileya scandens. In: William EG, Knox RB (eds) Pollination ”84. School of Botany, University of Melbourne, Melbourne, pp 214-216

    Google Scholar 

  • Qiu Y, Dombrovska O, Lee J, et al. (2005) Phylogenetic analysis of basal angiosperms based nine plastid, mitochondrial, and nuclear genes. Int J Plant Sci 166:815-842

    CAS  Google Scholar 

  • Qiu YL, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW. (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404-407

    CAS  PubMed  Google Scholar 

  • Richards AJ (1997) Plant breeding systems. Chapman and Hall, London

    Google Scholar 

  • Ride JP, Davies EM, Franklin FCH, Marshall DF (1999) Analysis of Arabidopsis genome reveals a large new gene family in plants. Plant Mol Biol 39:927-932

    CAS  PubMed  Google Scholar 

  • Runions JD, Owens J (1998) Evidence of prezygotic self-incompatiblity in a conifer. In: Owens SJ, Rudall PJ (eds) Reproductive biology. Kew, Royal Botanic Gardens, pp 55-264

    Google Scholar 

  • Sage TL, Sampson FB (2003) Evidence for ovarian self-incompatibility as a cause of self-sterility in the primitive woody angiosperm, Pseudowintera axillaris (Winteraceae). Ann Bot 91:1-10

    Google Scholar 

  • Sage TL, Bertin R, Williams EG (1994) Ovarian and other late-acting self-incompatibility. In: Williams EG, Clarke AE, Knox RB (eds) Advances in cellular and molecular biology of plants. Genetic control of self incompatibility and reproductive development in flowering plants, vol 2. Kluwer, Dordrecht, pp 116-140

    Google Scholar 

  • Sage TL, Strumas F, Cole WW, Barrett SCH (1999) Differential ovule development following self-and cross-pollination: The basis of self-sterility in Narcissus triandrus (Amaryllidaceae). Am J Bot 86:855-870

    PubMed  Google Scholar 

  • Sage TL, Pontieri V, Christopher R (2000) Self-incompatibility and mate recognition in mono-cotyledons. In: Monocots systematics and evolution. Proceedings of the second international conference on the comparative biology of Monocots. Aust. J. Bot. 2:268-275

    Google Scholar 

  • Sage TL, Griffin SR, Pontieri V, Drobac P, Cole WW, Barrett SCH (2001) Stigmatic Self-incompatibility and mating patterns in Trillium grandiflorum and Trillium erectum (Melan-thiaceae). Ann Bot 88:829-841

    Google Scholar 

  • Sage TL, Price MV, Waser NM (2006) Self-sterility in Ipomopsis aggregata (Polemoniaceae) is due to prezygotic ovule degeneration. Am J Bot 93:254-262

    Google Scholar 

  • Schneider EL, Moore LA (1977) Morphological studies of the Nymphaeaceae. VII. The floral biology of Nuphar lutea subsp, macrophylla. Brittonia 29:88-99

    Google Scholar 

  • Sears ER (1937) Cytological phenomena connected with self-sterility in the flowering plants. Genetics 22:130-181

    CAS  PubMed  Google Scholar 

  • Seavey SR, Bawa KS (1986) Late-acting self-incompatibility in angiosperms. Bot Rev 52:195-219

    Google Scholar 

  • Shore JS, Arbo MM, Fernández A (2006) Breeding system variation, genetics and evolution in the Turneraceae. New Phytol 171:539-551

    CAS  PubMed  Google Scholar 

  • Silva NF, Goring DR (2001) Mechanisms of self-incompatibility in flowering plants. Cell Mol Life Sci 58:1988-2007

    CAS  PubMed  Google Scholar 

  • Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:358-359

    Google Scholar 

  • Stebbins, GL (1957) Self fertilization and population variability in the higher plants. Am Nat 861:337-354

    Google Scholar 

  • Steinbachs JE, Holsinger KE (2002) S-RNase-mediated gametophytic self-incompatibility is ancestral in Eudicots. Mol Biol Evol 19:825-829

    CAS  PubMed  Google Scholar 

  • Stephenson AG, Good SV, Vogler DW (2000) Inter-relationships among inbreeding depres-sion, plasticity in the self-incompatibility system, and the breeding system of Campanula rapunculoides L. (Campanulaceae). Ann Bot 85:211-219

    CAS  Google Scholar 

  • Stevens VAM, Murray BG (1982) Studies on heteromorphic self-incompatibility systems: Phys-iological aspects of the incompatibility system in Primula obconica. Theor Appl Genet 61:245-256

    Google Scholar 

  • Suassuna T de MF, Bruckner CH, Carvalho CR de, Bor A (2003) Self-incompatibility in passionfruit: Evidence of gametophytic-sporophytic control. Theor Appl Genet 106:298-302

    PubMed  Google Scholar 

  • Tabah DA, McInnis SM, Hiscock SJ (2004) Members of the S-receptor kinase multigene family in Senecio squalidus L. (Asteraceae), a species with sporophytic self-incompatibility. Sex Plant Reprod 17:131-140

    CAS  Google Scholar 

  • Takayama S, Isogai A (2005) Self-incompatibility in plants. Annu Rev Plant Biol 56:467-489

    CAS  PubMed  Google Scholar 

  • Takayama S, Shimosato H, Shiba H, Funato M, Che FS, Watanabe M, Iwano M, Isogai A (2001) Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature 413:534-538

    CAS  PubMed  Google Scholar 

  • Talavera S, Gibbs PE, Fernândez-Piedra MP, Ortiz-Herrera (2001) Genetic control of self-incompatibility in Anagallis monelli (Primulaceae: Myrsinaceae). Heredity 87:589-597

    CAS  PubMed  Google Scholar 

  • Tezuka T, Akitab I, Yoshinoc N, Suzuki Y (2007) Regulation of self-incompatibility by acetyl-choline and cAMP in Lilium longiflorum. J Plant Physiol 164:878-885

    CAS  PubMed  Google Scholar 

  • Thien LB, White DA, Yatsu LY (1983) The reproductive biology of a relict Illicium floridanum Ellis. Am J Bot 70:719-727

    Google Scholar 

  • Thien LB, Sage TL, Jaffré T, Bernhardt P, Pontieri V, Weston P, Malloch D, Azuma H, Graham SW, McPherson MA, Rai HS, Sage RF, Dupre JL (2003) The population structure and floral biology of Amborella trichopoda Baillon (Amborellaceae). Ann Mo Bot Gard 90:466-490

    Google Scholar 

  • Thomson JD, Barrett SCH (1981) Selection for outcrossing, sexual selection and the evolution of dioecy in plants. Am Nat 118:443-449

    Google Scholar 

  • Umbach AL, Lalonde BA, Kandasamy MK, Nasrallah JB, Nasrallah ME (1990) Immunodetection of protein glycoforms encoded by two independent genes of the self-incompatibility multigene family of Brassica. Plant Physiol. 93:739-747

    CAS  PubMed  Google Scholar 

  • Uyenoyama MK (1995) A generalized least-squares estimate for the origin of sporophytic self-incompatibility. Genetics 139:975-992

    CAS  PubMed  Google Scholar 

  • Wang Y, Wang X, McCubbin AG, Kao T (2003) Genetic mapping and molecular characterization of the self-incompatibility S-locus in Petunia inflata. Plant Mol Biol 53:565-580

    CAS  PubMed  Google Scholar 

  • Watanabe M, Suzuki G, Takayama S, Isogai A, Hinata K (2000) Genomic organization of the SLG/SRK region of the S-locus in Brassica species. Ann Bot 85:155-160

    CAS  Google Scholar 

  • Weller SG, Donoghue MJ, Charlesworth D (1995) The evolution of self-incompatibility in flow-ering plants: A phylogenetic approach. In: Hoch PC, Stephenson AG (eds) Experimental and molecular approaches to plant biosystematics. Missouri Botanical Garden, St Louis, pp 355-382

    Google Scholar 

  • Whitehouse HLK (1950) Multiple allelomorph incompatibility of pollen and style in the evolution of angiosperms. Ann Bot N S 14:199-216

    Google Scholar 

  • Williams EG, Kaul V, Rouse JL, Palser BF (1986) Overgrowth of Pollen Tubes in embryo sacs of Rhododendron following interspecific pollinations. Aust J Bot 34:413-423

    Google Scholar 

  • Williams JH, Kennard KS (2006) Microsatellite loci for the basal angiosperm Austrobaileya scandens (Austrobaileyaceae). Mol Ecol Notes 6:201-203

    CAS  Google Scholar 

  • Worberg A, Quandt D, Barniske AM, Löhne C, Hilu KW, Borsch T (2007) Phylogeny of basal eudicots: Insights from non-coding and rapidly evolving DNA. Org Divers Evol 7:55-77

    Google Scholar 

  • Zanis MJ, Soltis PS, Qiu YL, Zimmer E, Soltis DE (2003) Phylogenetic analyses and perianth evolution in basal angiosperms. Ann Mo Bot Gard 90:129-150

    Google Scholar 

  • Zavada MS (1984) The relation between pollen exine sculpturing and self-incompatibility mecha-nisms. Plant Syst Evol 147:63-78

    Google Scholar 

  • Zavada MS, Taylor TN (1986) The Role of self-incompatibility and sexual selection in the gymnosperm-angiosperm transition: A hypothesis. Am Nat 128:538-550

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Allen, A.M., Hiscock, S.J. (2008). Evolution and Phylogeny of Self-Incompatibility Systems in Angiosperms. In: Self-Incompatibility in Flowering Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68486-2_4

Download citation

Publish with us

Policies and ethics