Skip to main content
Log in

Using finite mixtures of M-quantile regression models to handle unobserved heterogeneity in assessing the effect of meteorology and traffic on air quality

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Between 2012 and 2015, the PMetro project collected space–time aerosol and gas measurements by using instruments integrated on one of the Minimetro cabins, a public conveyance of the town of Perugia (Italy). In this work, we use PMetro data to study the effect of vehicular traffic and meteorological measurements on the distribution of fine particulate matter by fitting a finite mixture of M-quantile regression models. Using this methodology, it is possible to account for heterogeneity in the data using random effects with a discrete distribution with masses and probabilities directly estimated from the data. This allows us to relax assumptions on the parametric shape of the distribution of the random effects and grants extra-flexibility. In addition, it allows us to investigate the relationship between fine particulate matter concentration and the covariates at different levels of the conditional response distribution. Empirical results show that radon concentration and vehicular traffic have the largest effect on the distribution of fine particulate matter and provide some guidelines for policy makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggarwal S, Jain R, Marshall JD (2012) Real-time prediction of size-resolved ultrafine particulate matter on freeways. Environ Sci Technol 46(4):2234–2241

    Article  CAS  Google Scholar 

  • Aitkin M (1996) A general maximum likelihood analysis of overdispersion in generalized linear models. Stat Comput 6:251–262

    Article  Google Scholar 

  • Aitkin M (1999) A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 55:117–128

    Article  CAS  Google Scholar 

  • Aldrin M, Haff IH (2005) Generalised additive modelling of air pollution, traffic volume and meteorology. Atmos Environ 39(11):2145–2155

    Article  CAS  Google Scholar 

  • Alfò M, Salvati N, Ranalli MG (2017) Finite mixtures of quantile and M-quantile regression models. Stat Comput 27(2):547–570. https://doi.org/10.1007/s11222-016-9638-1

    Article  Google Scholar 

  • Aznarte JL (2017) Probabilistic forecasting for extreme \(\text{NO}_{2}\) pollution episodes. Environ Pollut 229:321–328

    Article  CAS  Google Scholar 

  • Bertaccini P, Dukic V, Ignaccolo R (2012) Modeling the short-term effect of traffic and meteorology on air pollution in Turin with generalized additive models. Adv Meteorol 2012, Article ID 609328. https://doi.org/10.1155/2012/609328

  • Bianchi A, Fabrizi E, Salvati N, Tzavidis N (2018) Estimation and testing in M-quantile regression with applications to small area estimation. Int Stat Rev 86(3):541–570. https://doi.org/10.1111/insr.12267

    Article  Google Scholar 

  • Boehning D (2003) The EM algorithm with gradient function update for discrete mixtures with known (fixed) number of components. Stat Comput 13:257–265

    Article  Google Scholar 

  • Borgoni R, Del Bianco P, Salvati N, Schmid T, Tzavidis N (2018) Modelling the distribution of health-related quality of life of advanced melanoma patients in a longitudinal multi-centre clinical trial using M-quantile random effects regression. J R Stat Soc Ser A (Stat Soc) 27(2):549–563

    Google Scholar 

  • Breckling J, Chambers R (1988) M-quantiles. Biometrika 75(4):761–771

    Article  Google Scholar 

  • Brunekreef B, Holgate ST (2002) Air pollution and health. The Lancet 360(9341):1233–1242

    Article  CAS  Google Scholar 

  • Carslaw DC, Beevers SD, Tate JE (2007) Modelling and assessing trends in traffic-related emissions using a generalised additive modelling approach. Atmos Environ 41(26):5289–5299

    Article  CAS  Google Scholar 

  • Castellini S, Moroni B, Cappelletti D (2014) PMetro: measurement of urban aerosols on a mobile platform. Measurement 49:99–106

    Article  Google Scholar 

  • Clifford S, Low Choy S, Hussein T, Mengersen K, Morawska L (2011) Using the generalised additive model to model the particle number count of ultrafine particles. Atmos Environ 45(32):5934–5945

    Article  CAS  Google Scholar 

  • Clifford S, Mølgaard B, Low Choy S, Corander J, Hämeri K, Mengersen K, Hussein T (2012) Bayesian semi-parametric forecasting of ultrafine particle number concentration with penalised splines and autoregressive errors. ArXiv preprint arXiv:1207.0558

  • Conde-Amboage M, González-Manteiga W, Sánchez-Sellero C (2017) Predicting trace gas concentrations using quantile regression models. Stoch Environ Res Risk Assess 31(6):1359–1370

    Article  Google Scholar 

  • Das P, Ghosal S (2017) Analyzing ozone concentration by Bayesian spatio-temporal quantile regression. Environmetrics 28(4):e2443

    Article  CAS  Google Scholar 

  • Del Sarto S (2015) Additive and spatio-temporal models for the analysis of air pollution data from a mobile monitoring station. Ph.D. Thesis, University of Perugia

  • Del Sarto S, Ranalli MG, Bakar KS, Cappelletti D, Moroni B, Crocchianti S, Castellini S, Spataro F, Esposito G, Ianniello A, Salvatori R (2016a) Bayesian spatiotemporal modeling of urban air pollution dynamics. In: Di Battista T, Moreno E, Racugno W (eds) Topics on methodological and applied statistical inference. Springer, Berlin, pp 95–103

    Google Scholar 

  • Del Sarto S, Ranalli MG, Cappelletti D, Moroni B, Crocchianti S, Castellini S (2016b) Modelling spatio-temporal air pollution data from a mobile monitoring station. J Stat Comput Simul 86(13):2546–2559

    Article  Google Scholar 

  • Dempster A, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39:1–38

    Google Scholar 

  • Farcomeni A (2012) Quantile regression for longitudinal data based on latent Markov subject-specific parameters. Stat Comput 22(1):141–152

    Article  Google Scholar 

  • Fontanella L, Ippoliti L, Sarra A, Valentini P, Palermi S (2015) Hierarchical generalised latent spatial quantile regression models with applications to indoor radon concentration. Stoch Environ Res Risk Assess 29(2):357–367

    Article  Google Scholar 

  • Friedl H, Kauermann G (2000) Standard errors for EM estimates in generalized linear models with random effects. Biometrics 56(3):761–767

    Article  CAS  Google Scholar 

  • Fruin S, Westerdahl D, Sax T, Sioutas C, Fine P (2008) Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles. Atmos Environ 42(2):207–219. https://doi.org/10.1016/j.atmosenv.2007.09.057

    Article  CAS  Google Scholar 

  • Gao M, Zheng H (2018) Nonstationary extreme value analysis of temperature extremes in China. Stoch Environ Res Risk Assess 32(5):1299–1315

    Article  Google Scholar 

  • Geraci M, Bottai M (2007) Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8:140–54

    Article  Google Scholar 

  • Geraci M, Bottai M (2014) Linear quantile mixed models. Stat Comput 24:461–479

    Article  Google Scholar 

  • Gil-Castineira F, Gonzalez-Castano F, Duro R, Lopez-Pena F (2008) Urban pollution monitoring through opportunistic mobile sensor networks based on public transport. In: 2008 IEEE international conference on Computational Intelligence for Measurement Systems and Applications, CIMSA 2008. IEEE, pp 70–74

  • Gray BR, Lyubchich V, Gel YR, Rogala JT, Robertson DM, Wei X (2016) Estimation of river and stream temperature trends under haphazard sampling. Stat Methods Appl 25(1):89–105. https://doi.org/10.1007/s10260-015-0334-7

    Article  Google Scholar 

  • Hoek G, Brunekreef B, Goldbohm S, Fischer P, van den Brandt PA (2002) Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. The Lancet 360(9341):1203–1209

    Article  Google Scholar 

  • Jones M (1994) Expectiles and M-quantiles are quantiles. Stat and Probab Lett 20:149–153

    Article  Google Scholar 

  • Kim Y, Guldmann JM (2011) Impact of traffic flows and wind directions on air pollution concentrations in Seoul, Korea. Atmos Environ 45(16):2803–2810

    Article  CAS  Google Scholar 

  • Kneib T (2013) Beyond mean regression. Stat Model 13(4):275–303

    Article  Google Scholar 

  • Laird N (1978) Nonparametric maximum likelihood estimation of a mixing distribution. J Am Stat Assoc 73:805–811

    Article  Google Scholar 

  • Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38(4):963–974

    Article  CAS  Google Scholar 

  • Li L, Wu J, Hudda N, Sioutas C, Fruin SA, Delfino RJ (2013) Modeling the concentrations of on-road air pollutants in southern California. Environ Sci Technol 47(16):9291–9299

    Article  CAS  Google Scholar 

  • Marino MF, Tzavidis N, Alfò M (2018) Mixed hidden Markov quantile regression models for longitudinal data with possibly incomplete sequences. Stat Methods Med Res 27(7):2231–2246

    Article  Google Scholar 

  • Newey WK, Powell JL (1987) Asymmetric least squares estimation and testing. Econometrica 55(4):819–847

    Article  Google Scholar 

  • Otero N, Sillmann J, Schnell JL, Rust HW, Butler T (2016) Synoptic and meteorological drivers of extreme ozone concentrations over Europe. Environ Res Lett 11(2):024005

    Article  CAS  Google Scholar 

  • Pearce JL, Beringer J, Nicholls N, Hyndman RJ, Tapper NJ (2011) Quantifying the influence of local meteorology on air quality using generalized additive models. Atmos Environ 45(6):1328–1336

    Article  CAS  Google Scholar 

  • Pirjola L, Lähde T, Niemi J, Kousa A, Rönkkö T, Karjalainen P, Keskinen J, Frey A, Hillamo R (2012) Spatial and temporal characterization of traffic emissions in urban microenvironments with a mobile laboratory. Atmos Environ 63:156–167

    Article  CAS  Google Scholar 

  • Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44(46):7520–7540

    Article  CAS  Google Scholar 

  • Ranalli MG, Rocco G, Jona Lasinio G, Moroni B, Castellini S, Crocchianti S, Cappelletti D (2016) Functional exploratory data analysis for high-resolution measurements of urban particulate matter. Biom J 58(5):1229–1247

    Article  Google Scholar 

  • Royall RM (1986) Model robust confidence intervals using maximum likelihood estimators. Int Stat Rev/Revue Internationale de Statistique 54:221–226

    Google Scholar 

  • Schlink U, Thiem A, Kohajda T, Richter M, Strebel K (2010) Quantile regression of indoor air concentrations of volatile organic compounds (VOC). Sci Total Environ 408(18):3840–3851

    Article  CAS  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2012) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, Haboken

    Google Scholar 

  • Sousa S, Pires J, Martins F, Pereira M, Alvim-Ferraz M (2009) Potentialities of quantile regression to predict ozone concentrations. Environmetrics 20(2):147–158

    Article  CAS  Google Scholar 

  • Tzavidis N, Salvati N, Schmid T, Flouri E, Midouhas E (2016) Longitudinal analysis of the strengths and difficulties questionnaire scores of the millennium cohort study children in england using M-quantile random-effects regression. J R Stat Soc Ser A (Stat Soc) 179:427–452

    Article  Google Scholar 

  • Wang M, Zhu T, Zheng J, Zhang R, Zhang S, Xie X, Han Y, Li Y (2009) Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 summer olympics. Atmos Chem Phys 9(21):8247–8263

    Article  CAS  Google Scholar 

  • Westerdahl D, Fruin S, Sax T, Fine PM, Sioutas C (2005) Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos Environ 39(20):3597–3610

    Article  CAS  Google Scholar 

  • White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econom J Econom Soc 48:817–838

    Google Scholar 

  • Yu K, Moyeed RA (2001) Bayesian quantile regression. Stat Probab Lett 54:437–447

    Article  Google Scholar 

  • Zhao W, Fan S, Guo H, Gao B, Sun J, Chen L (2016) Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000–2015 using quantile and multiple line regression models. Atmos Environ 144:182–193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Del Sarto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material

A computationally efficient algorithm for estimation and inference developed in R language from the authors is made available in an on-line Supplementary Material. (26KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Sarto, S., Marino, M.F., Ranalli, M.G. et al. Using finite mixtures of M-quantile regression models to handle unobserved heterogeneity in assessing the effect of meteorology and traffic on air quality. Stoch Environ Res Risk Assess 33, 1345–1359 (2019). https://doi.org/10.1007/s00477-019-01687-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-019-01687-x

Keywords

Navigation