Skip to main content
Log in

Finite mixtures of quantile and M-quantile regression models

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In this paper we define a finite mixture of quantile and M-quantile regression models for heterogeneous and /or for dependent/clustered data. Components of the finite mixture represent clusters of individuals with homogeneous values of model parameters. For its flexibility and ease of estimation, the proposed approaches can be extended to random coefficients with a higher dimension than the simple random intercept case. Estimation of model parameters is obtained through maximum likelihood, by implementing an EM-type algorithm. The standard error estimates for model parameters are obtained using the inverse of the observed information matrix, derived through the Oakes (J R Stat Soc Ser B 61:479–482, 1999) formula in the M-quantile setting, and through nonparametric bootstrap in the quantile case. We present a large scale simulation study to analyse the practical behaviour of the proposed model and to evaluate the empirical performance of the proposed standard error estimates for model parameters. We considered a variety of empirical settings in both the random intercept and the random coefficient case. The proposed modelling approaches are also applied to two well-known datasets which give further insights on their empirical behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. National Bureau of standards, Washington, DC (1964)

    MATH  Google Scholar 

  • Aitkin, M.: A general maximum likelihood analysis of overdispersion in generalized linear models. Stat. Comput. 6, 127–130 (1996)

    Article  Google Scholar 

  • Aitkin, M.: A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 55, 117–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Aitkin, M., Francis, B., Hinde, J.: Statistical Modelling in GLIM, 2nd edn. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  • Alfó, M., Trovato, G.: Semiparametric mixture models for multivariate count data, with application. Econom. J. 7, 426–454 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Bianchi, A., Fabrizi, E., Salvati, N., Tzavidis, N.: M-quantile regression: diagnostics and parametric representation of the model. Working paper. http://www.sp.unipg.it/surwey/dowload/publications/24-mq-diagn.html (2015)

  • Bianchi, A., Salvati, N.: Asymptotic properties and variance estimators of the M-quantile regression coefficients estimators. Commun. Stat. 44, 2416–2429 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Breckling, J., Chambers, R.: \({M}\)-quantiles. Biometrika 75, 761–771 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Cantoni, E., Ronchetti, E.: Robust inference for generalized linear models. J. Am. Stat. Assoc. 96, 1022–1030 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, C.: Semi-parametric and non-parametric methods for the analysis of repeated measurements with applications to clinical trials. Stat. Med. 10, 1959–1980 (1991)

    Article  Google Scholar 

  • DeSarbo, W., Cron, W.: A maximum likelihood methodology for clusterwise regression. J. Classif. 5, 249–282 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Farcomeni, A.: Quantile regression for longitudinal data based on latent Markov subject-specific parameters. Stat. Comput. 22, 141–152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Follmann, D., Lambert, D.: Generalizing logistic regression by nonparametric mixing. J. Am. Stat. Assoc. 84, 295–300 (1989)

    Article  Google Scholar 

  • Friedl, H., Kauermann, G.: Standard errors for EM estimates in generalized linear models with random effects. Biometrics 56, 761–767 (2000)

    Article  MATH  Google Scholar 

  • Geraci, M., Bottai, M.: Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8, 140–154 (2007)

    Article  MATH  Google Scholar 

  • Geraci, M., Bottai, M.: Linear quantile mixed models. Stat. Comput. 24, 461–479 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Geyer, C., Thompson, E.: Constrained Monte Carlo maximum likelihood for dependent data. J. R. Stat. Soc. B 54, 657–699 (1992)

    MathSciNet  Google Scholar 

  • Gueorguieva, R.: A multivariate generalized linear mixed model for joint modelling of clustered outcomes in the exponential family. Stat. Model. 1, 177–193 (2001)

    Article  MATH  Google Scholar 

  • Hennig, C.: Identifiability of models for clusterwise linear regression. J. Classif. 17, 273–296 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P.: Robust regression: asymptotics, conjectures and Monte Carlo. Ann. Stat. 1, 799–821 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P. J.: The behavior of maximum likelihood estimates under nonstandard conditions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 221–233. Wiley, Amsterdam (1967)

  • Huber, P.J.: Robust Statistics. Wiley, Hoboken (1981)

    Book  MATH  Google Scholar 

  • Jank, W., Booth, J.: Efficiency of Monte Carlo EM and simulated maximum likelihood in two-stage hierarchical models. J. Comput. Graph. Stat. 12, 214–229 (2003)

  • Jones, M.C.: Expectiles and m-quantiles are quantiles. Stat. Probab. Lett. 20, 149–153 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Jung, S.: Quasi-likelihood for median regression models. J. Am. Stat. Assoc. 91, 251–257 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46, 33–50 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker, R., D’Orey, V.: Computing regression quantiles. Biometrika 93, 255–268 (1987)

    Google Scholar 

  • Kokic, P., Chambers, R., Breckling, J., Beare, S.: A measure of production performance. J. Bus. Econ. Stat. 10, 419–435 (1997)

    Google Scholar 

  • Laird, N.M.: Nonparametric maximum likelihood estimation of a mixing distribution. J. Am. Stat. Assoc. 73, 805–811 (1978)

    Article  MATH  Google Scholar 

  • Liu, Q., Pierce, D.: A note on Gaussian–Hermite quadrature. Biometrika 81, 624–629 (1994)

    MathSciNet  MATH  Google Scholar 

  • Liu, Y., Bottai, M.: Mixed-effects models for conditional quantiles with longitudinal data. Int. J. Biostat. 5, 1–22 (2009)

    Article  MathSciNet  Google Scholar 

  • Louis, T.: Finding the observed information matrix when using the EM algorithm. J. R. Stat. Soc. Ser. B 44, 226–233 (1982)

    MathSciNet  MATH  Google Scholar 

  • McCulloch, C.: Maximum likelihood estimation of variance components for binary data. J. Am. Stat. Assoc. 89, 330–335 (1994)

    Article  MATH  Google Scholar 

  • Munkin, M.K., Trivedi, P.K.: Simulated maximum likelihood estimation of multivariate mixed-Poisson regression models, with application. Econom. J. 2, 29–48 (1999)

    Article  MATH  Google Scholar 

  • Newey, W., Powell, J.: Asymmetric least squares estimation and testing. Econometrica 55, 819–847 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Oakes, D.: Direct calculation of the information matrix via the EM algorithm. J. R. Stat. Soc. Ser. B 61, 479–482 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Pinheiro, J., Bates, D.: Approximations to the log-likelihood function in the nonlinear mixed-effects model. J. Comput. Graph. Stat. 4, 12–35 (1995)

    Google Scholar 

  • Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  • Street, J., Carroll, R., Ruppert, D.: A note on computing robust regression estimates via iteratively reweighed least squares. Am. Stat. 42, 152–154 (1988)

    Google Scholar 

  • Treatment of Lead-Exposed Children (TLC) Trial Group: Safety and efficacy of succimer in toddlers with blood lead levels of 20–44 \(\mu {\rm g/dl}\). Pediatr. Res. 48, 593–599 (2000)

  • Tzavidis, N., Salvati, N., Schmid, T., Flouri, E., Midouhas, E.: Longitudinal analysis of the Strengths and Difficulties Questionnaire scores of the Millennium Cohort Study children in England using M-quantile random effects regression. J. R. Stat. Soc. A. 179, 427–452 (2016)

  • Wang, P., Puterman, M., Cockburn, I., Le, N.: Mixed Poisson regression models with covariate dependent rates. Biometrics 52, 381–400 (1996)

    Article  MATH  Google Scholar 

  • Wang, Y., Lin, X., Zhu, M., Bai, Z.: Robust estimation using the huber funtion with a data-dependent tuning constant. J. Comput. Graph. Stat. 16(2), 468–481 (2007)

    Article  Google Scholar 

  • Wedel, M., DeSarbo, W.: A mixture likelihood approach for generalized linear models. J. Classif. 12, 21–55 (1995)

    Article  MATH  Google Scholar 

  • White, H.: A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 817–838 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of Salvati and Ranalli has been developed under the support of the project PRIN-SURWEY http://www.sp.unipg.it/surwey/ (Grant 2012F42NS8, Italy). Marco Alfò acknowledges the financial support from the grant RBFR12SHVV of the Italian Government (FIRB project “Mixture and latent variable models for causal inference and analysis of socio-economic data”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Salvati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfò, M., Salvati, N. & Giovanna, R.M. Finite mixtures of quantile and M-quantile regression models. Stat Comput 27, 547–570 (2017). https://doi.org/10.1007/s11222-016-9638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-016-9638-1

Keywords

Navigation