Skip to main content
Log in

Are wood fibres as sensitive to environmental conditions as vessels in tree rings with intra-annual density fluctuations (IADFs) in Mediterranean species?

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Wood fibres are as sensitive to environmental conditions as vessels in tree rings with intra-annual density fluctuations (IADFs) in Mediterranean species.

Abstract

Forecasted environmental changes are likely to increase the frequency of intra-annual density fluctuations (IADFs) in Mediterranean tree rings. The interpretation of intra-annual anatomical variability of tree rings with IADFs can be useful to understand plant-growth response to environmental changes with seasonal resolution. We analysed the intra-annual variability of quantitative traits of both vessels and fibres in the woods of Arbutus unedo L. and Erica arborea L. to compare the sensitivity of different cell types to environmental variations. We applied digital image analysis on microphotographs of semi-thin sections of tree rings formed at sites with different soil water availability. Wood of both species showed good adaptability that allows anatomical traits of vessels and fibres to be harmonised by changing the water transport capacity and wood strength, promoting the efficiency or safety of water transport according to water availability during wood formation. The size of fibres showed trends of variation similar to vessels. Not all parameters of vessels were accurate indicators of the IADF presence. In conclusion, parameters of fibres, which offer advantages during automatic measurement, showed the same sensitivity to environmental fluctuations as vessels. Thus, they could be good indicators of summer drought to describe and interpret the ecological meaning of IADFs in tree rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrantes J, Campelo F, García-González I, Nabais C (2013) Environmental control of vessel traits in Quercus ilex under Mediterranean climate: relating xylem anatomy to function. Trees 27:655–662

    Article  Google Scholar 

  • Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985–992

    Article  PubMed  Google Scholar 

  • Baas P, Ewers FW, Davis SD, Wheeler EA (2004) Evolution of xylem physiology. In: Hemsley A, Poole I (eds) The evolution of plant physiology. Elsevier Scientific, Amsterdam, pp 273–295

    Chapter  Google Scholar 

  • Battipaglia G, De Micco V, Brand WA, Linke P, Aronne G, Saurer M, Cherubini P (2010) Variations of vessel diameter and δ13C in false rings of Arbutus unedo L. reflect different environmental conditions. New Phytol 188:1099–1112

    Article  CAS  PubMed  Google Scholar 

  • Battipaglia G, De Micco V, Brand WA, Saurer M, Aronne G, Linke P, Cherubini P (2014a) Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy). Plant, Cell Environ 37:382–391

    Article  CAS  Google Scholar 

  • Battipaglia G, De Micco V, Fournier T, Aronne G, Carcaillet C (2014b) Isotopic and anatomical signals for interpreting fire-related responses in Pinus halepensis. Trees 28:1095–1104

    Article  Google Scholar 

  • Brunel G, Borianne P, Subsol G, Jaeger M, Caraglio Y (2014) Automatic identification and characterization of radial files in light microscopy images of wood. Ann Bot 114:829–840

    Article  PubMed  PubMed Central  Google Scholar 

  • Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480

    Article  PubMed  Google Scholar 

  • Campelo F, Nabais C, Freitas H, Gutiérrez E (2007) Climatic significance of treering width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann For Sci 64:229–238

    Article  Google Scholar 

  • Campelo F, Vieira C, Nabais C (2013) Tree-ring growth and intra-annual density fluctuations of Pinus pinaster responses to climate: does size matter? Trees 27:763–772

    Article  Google Scholar 

  • Carlquist S (1975) Ecological strategies of xylem evolution. University of California Press, Berkeley

    Google Scholar 

  • Carlquist S (1989) Adaptive wood anatomy of chaparral shrubs. In: Keely JE (ed) The California chaparral: paradigms re-examined. Los Angeles Country Museum of Natural History Contributions, Los Angeles, pp 25–35

    Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherubini P, Gartner BL, Tognetti R, Bräker OU, Schoch W, Innes JL (2003) Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol Rev 78:119–148

    Article  PubMed  Google Scholar 

  • De Luis M, Gričar J, Čufar K, Raventós J (2007) Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA J 28:389–404

    Article  Google Scholar 

  • De Luis M, Novak K, Cufar K, Raventos J (2009) Size mediated climate-growth relationships in Pinus halepensis and Pinus pinea. Trees 23:1065–1073

    Article  Google Scholar 

  • De Luis M, Novak K, Raventós J, Gricar J, Prislan P, Cufar K (2011) Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia 29:163–169

    Article  Google Scholar 

  • De Micco V, Aronne G (2007) Anatomical features, monomer lignin composition and accumulation of phenolics in one-year-old branches of the Mediterranean Cistus ladanifer L. Bot J Linn Soc 155:361–371

    Article  Google Scholar 

  • De Micco V, Aronne G (2009) Seasonal dimorphism in wood anatomy of the Mediterranean Cistus incanus L. subsp. incanus. Trees 23:981–989

    Article  Google Scholar 

  • De Micco V, Aronne G (2012) Morpho-anatomical traits for plant adaptation to drought. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer-Verlag, Berlin Heidelberg, pp 37–62

    Chapter  Google Scholar 

  • De Micco V, Toraldo G, Aronne G (2006) Method to classify xylem elements using cross sections of one-year-old branches in Mediterranean woody species. Trees 20:474–482

    Article  Google Scholar 

  • De Micco V, Saurer M, Aronne G, Tognetti R, Cherubini P (2007) Variations of wood anatomy and δ13C within-tree rings of coastal Pinus pinaster showing intraannual density fluctuations. IAWA J 28:61–74

    Article  Google Scholar 

  • De Micco V, Aronne G, Baas P (2008) Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees 22:643–655

    Article  Google Scholar 

  • De Micco V, Battipaglia G, Brand WA, Linke P, Saurer M, Aronne G, Cherubini P (2012) Discrete versus continuous analysis of anatomical and δ13C variability in tree rings with intra-annual density fluctuations. Trees 26:513–524

    Article  Google Scholar 

  • De Micco V, Zalloni E, Balzano A, Battipaglia G (2013) Fire influence on Pinus halepensis: wood responses close and far from the scars. IAWA J 34:446–458

    Article  Google Scholar 

  • De Micco V, Battipaglia G, Cherubini P, Aronne G (2014) Comparing methods to analyse anatomical features of tree rings with and without intra-annual-density-fluctuations (IADFs). Dendrochronologia 32:1–6

    Article  Google Scholar 

  • Fahn A (1964) Some anatomical adaptations in desert plants. Phytomorphology 14:93–102

    Google Scholar 

  • Fahn A, Werker E, Baas P (1986) Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Fonti P, von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53

    Article  PubMed  Google Scholar 

  • Fonti P, Heller O, Cherubini P, Rigling A, Arend M (2013) Wood anatomical responses of oak saplings exposed to air warming and soil drought. Plant Biol 15(S1):210–219

    Article  PubMed  Google Scholar 

  • Gallé A, Feller U (2007) Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. Physiol Plantarum 131:412–421

    Article  Google Scholar 

  • García-González I, Eckstein D (2003) Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol 23:497–504

    Article  Google Scholar 

  • Gartner BL, Baker BC, Spicer R (2001) Distribution and vitality of xylem rays in relation to tree leaf area in Douglas-fir. IAWA J 21:389–401

    Article  Google Scholar 

  • Gea-Izquierdo G, Battipaglia G, Gartner H, Cherubini P (2013) Xylem adjustment in Erica arborea to temperature and moisture availability in contrasting climates. IAWA J 34:109–126

    Article  Google Scholar 

  • Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dynam 20:327–339

    Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104

    Article  Google Scholar 

  • Gratani L, Varone L (2004) Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin. Photosynthetica 42:551–558

    Article  Google Scholar 

  • Griffin D, Meko DM, Touchan R, Leavitt SW, Woodhouse CA (2011) Latewood chronology development for summer-moisture reconstruction in the U.S. Southwest. Tree-Ring Res 67:87–101

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  Google Scholar 

  • Hertig E, Jacobeit J (2008) Downscaling future climate change: temperature scenarios for the Mediterranean area. Global Planet Change 63:127–131

    Article  Google Scholar 

  • Hoffer M, Tardif JC (2009) False rings in jack pine and black spruce trees from eastern Manitoba as indicators of dry summers. Can J For Res 39:1722–1723

    Article  Google Scholar 

  • Hsiao TC, Acevedo E, Fereres E, Henderson DW (1976) Stress metabolism: water stress, growth and osmotic adjustment. Philosop TR Soc B 273:479–500

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001) Climate Change 2001: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2007) Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities. Plant, Cell Environ 30:1599–1609

    Article  Google Scholar 

  • Jansen S, Baas P, Gasson P, Smets E (2003) Vestured pits: do they promote safer water transport? Int J Plant Sci 164:405–413

    Article  Google Scholar 

  • Larson S (1960) On the influence of the arctic fox Alopex lagopus on the distribution of arctic birds. Oikos 11:276–305

    Article  Google Scholar 

  • Martínez-Vilalta J, Prat E, Oliveras I, Pinol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133:19–29

    Article  PubMed  Google Scholar 

  • Masiokas M, Villalba R (2004) Climatic significance of intra-annual bands in the wood of Nothofagus pumilio in southern Patagonia. Trees 18:696–704

    Article  Google Scholar 

  • McCulloh KA, Sperry JS (2005) Patterns in hydraulic architecture and their implications for transport efficiency. Tree Physiol 25:257–267

    Article  PubMed  Google Scholar 

  • Pratt RB, Jacobsen AL, Golgotiu KA, Sperry JS, Ewers FW, Davis SD (2007) Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae). Ecol Monogr 77:239–253

    Article  Google Scholar 

  • Rigling A, Bräker OU, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress in Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–121

    Article  Google Scholar 

  • Rozas V, Garcia-Gonzalez I, Zas R (2011) Climatic control of intraannual wood density fluctuations in Pinus pinaster in NW Spain. Trees 25:443–453

    Article  Google Scholar 

  • Scholz A, Klepsch M, Karimi Z, Jansen S (2013) How to quantify conduits in wood? Front Plant Sci 4:1–11

    Article  Google Scholar 

  • Schweingruber FH (1978) Mikroskopische Holzanatomie. Eidgenossische Anstalt fur das forstliche Versuchswesen, Birmensdorf

    Google Scholar 

  • Schweingruber FH (2007) Wood structure and environment. Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  • Shields LM (1950) Leaf xeromorphy as related to physiological and structural influences. Bot Rev 16:399–447

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function of conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    Article  PubMed  Google Scholar 

  • Tingley MA (1937) Double growth rings in Red Astrachan. J Am Soc Hortic Sci 34:61

    Google Scholar 

  • Vasquez-Cooz I, Meyer RW (2002) A differential staining method to identify lignified and unlignified tissues. Biotech Histochem 77:277–282

    Article  Google Scholar 

  • Vieira J, Campelo F, Nabais C (2009) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees 23:257–265

    Article  Google Scholar 

  • Vieira J, Rossi S, Campelo F, Freitas H, Nabais C (2014) Xylogenesis of Pinus pinaster under a Mediterranean climate. Ann For Sci 7:71–80

    Article  Google Scholar 

  • von Arx G, Carrer M (2014) ROXAS—a new tool to build centuries-long tracheid-lumen chronologies in conifers. Dendrochronologia 32:290–293

    Article  Google Scholar 

  • von Arx G, Kueffer C, Fonti P (2013) Quantifying plasticity in vessel grouping—added value from the image analysis tool ROXAS. IAWA J 34:433–445

    Article  Google Scholar 

  • Wegner L, von Arx G, Sass-Klaassen U, Eilmann B (2013) ROXAS—an efficient and accurate tool to detect vessels in diffuse-porous species. IAWA J 34:425–432

    Article  Google Scholar 

  • Wheeler EA, Baas P, Gasson PE (1989) IAWA list for microscopic hardwood identification. IAWA Bull 10:219–332

    Article  Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Intervessel pitting and cavitation in Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell Environ 28:800–812

    Article  Google Scholar 

  • Wimmer R (2002) Wood anatomical features in tree-rings as indicators of environmental change. Dendrochronologia 20:21–36

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank L. Nardella (Parco Nazionale dell`Arcipelago Toscano) and D. Giove (Comunità Montana dell`Arcipelago Toscano) for assistance in the field. The authors also acknowledge M. Nötzli for assistance with the preparation of the microsections, and H. Gärtner and W. Schoch for assistance during the laboratory activities. The authors thank Dr. Mark J. Walters for the language revision. This study profited from discussions within the COST Action STRESS (COST-FP1106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica De Micco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Braeuning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Micco, V., Battipaglia, G., Balzano, A. et al. Are wood fibres as sensitive to environmental conditions as vessels in tree rings with intra-annual density fluctuations (IADFs) in Mediterranean species?. Trees 30, 971–983 (2016). https://doi.org/10.1007/s00468-015-1338-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1338-5

Keywords

Navigation