Skip to main content

Advertisement

Log in

Size mediated climate–growth relationships in Pinus halepensis and Pinus pinea

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Functional processes in trees undergo changes as the tree size increases, which may affect the response of trees to environmental factors. We tested tree-ring response to climate in four groups of trees, including large and small Pinus halepensis and Pinus pinea trees using cluster, principal component (PC) and dendroclimatological analysis. The trees were of the same age and growing on a plantation in the semiarid coastal area of southern Spain. Cluster and PC analyses showed a clear separation into four groups of trees. Autocorrelation and mean sensitivity showed significant differences between the two size classes. PCA recognised four representative principal components where PC1 represented the tree-ring—climate variability common to both species and sizes, whereas PC2, PC3 and PC4 represented a species-specific and size-dependent response of trees to climate. The differences between the two size classes were greater than those between the two species. The results suggest that future tree-ring studies should include trees stratified by size. Only this would make it possible to produce unbiased predictions on the consequences of climate change and to devise suitable mitigation strategies for preserving Mediterranean forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beniston M (2002) Climate modelling at various spatial and temporal scales: where can dendrochronology help? Dendrochronologia 20:117–132. doi:10.1078/1125-7865-00012

    Article  Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311. doi:10.1016/j.cageo.2003.11.004

    Article  Google Scholar 

  • Campelo F, Nabais C, Freitas H, Gutiérrez E (2006) Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from dry Mediterranean area in Portugal. Ann Sci 64:229–238

    Google Scholar 

  • Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85:730–740. doi:10.1890/02-0478

    Article  Google Scholar 

  • Chhin S, Hogg EH, Lieffers VJ, Huang S (2008) Potential effects of climate change on the growth of lodgepole pine across diameter size classes and ecological regions. For Ecol Manag 256:1692–1703. doi:10.1016/j.foreco.2008.02.046

    Article  Google Scholar 

  • Cook E, Briffa K, Shiyatov S, Mazepa V (1990) Tree-ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. Kluwer Academic Publishers, Dordrecht, pp 104–123

    Google Scholar 

  • Copenheaver CA, Abrams MD (2003) Dendroecology in young stands: case studies from jack pine in northern lower Michigan. For Ecol Manag 182:247–257. doi:10.1016/S0378-1127(03)00049-5

    Article  Google Scholar 

  • De Luis M, González-Hidalgo JC, Longares LA, Stepanek P Seasonal precipitation trends in Mediterranean Iberian Peninsula in second half of XX century. Int J Climatol (2009). doi:10.1002/joc.1778

  • De Luis M, Gričar J, Čufar K, Raventós J (2007) Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA J 28:389–404

    Google Scholar 

  • Di Filippo A, Biondi F, Čufar K, De Luis M, Grabner M, Maugeri M, Saba EP, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–1892. doi:10.1111/j.1365-2699.2007.01747.x

    Article  Google Scholar 

  • Escarré A, Martín J, Seva E (1989) Estudio sobre el medio y la biocenosis en los arenales de la provincia de Alicante. Diputación provincial de Alicante, Spain

    Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253. doi:10.1126/science.1066208

    Article  PubMed  CAS  Google Scholar 

  • Esper J, Niederer R, Bebi P, Frank D (2008) Climate signal age effects-evidence from young and old trees in the Swiss Engadin. For Ecol Manag 255:3783–3789. doi:10.1016/j.foreco.2008.03.015

    Article  Google Scholar 

  • Fritts HC (1976) Tree ring and climate. Academic Press, New York

    Google Scholar 

  • Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188. doi:10.1016/S0065-2504(08)60158-0

    Article  Google Scholar 

  • Guiot J (1991) The bootstrapped response function. Tree-Ring Bull 51:39–41

    Google Scholar 

  • Holmes RL (1994) Dendrochronology program library user’s manual. Laboratory of tree-ring research. University of Arizona, Tucson

    Google Scholar 

  • Kaiser HF (1992) On Cliff’s formula, the Kaiser–Guttman rule, and the number of factors. Percept Mot Skills 74:595–598. doi:10.2466/PMS.74.2.595-598

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787. doi:10.1038/33859

    Article  CAS  Google Scholar 

  • Melvin TM, Briffa KR (2008) A ‘‘signal-free’’ approach to dendroclimatic standardisation. Dendrochronologia 26:71–86. doi:10.1016/j.dendro.2007.12.001

    Article  Google Scholar 

  • Mencuccini M, Martinez-Vilalta J, Vanderklein D, Hamid HA, Korakaki E, Lee S, Michiels B (2005) Size-mediated ageing reduces vigour in trees. Ecol Lett 8:1183–1190. doi:10.1111/j.1461-0248.2005.00819.x

    Article  Google Scholar 

  • Oberhuber W, Kofler W (2000) Topographic influences on radial growth of Scots pine (Pinus sylvestris L.) at small spatial scales. Plant Ecol 146:231–240. doi:10.1023/A:1009827628125

    Article  Google Scholar 

  • Peñuelas J (2005) Plant physiology—a big issue for trees. Nature 437:965–966. doi:10.1038/437965a

    Article  PubMed  Google Scholar 

  • Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140. doi:10.1046/j.1365-2486.2003.00566.x

    Article  Google Scholar 

  • Rathgeber C, Nicault A, Guiot J, Keller T, Guibal F, Roche P (2000) Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Global Planet Change 26:405–421. doi:10.1016/S0921-8181(00)00053-9

    Article  Google Scholar 

  • Raventós J, de Luis M, Gras MJ, Čufar K, González-Hidalgo JC, Bonet A, Sánchez JR (2001) Growth of Pinus pinea and Pinus halepensis as affected by dryness and marine spray in a semiarid sand dune ecosystem. Dendrochronologia 19:211–220

    Google Scholar 

  • Richardson DM, Rundel PW (1998) Ecology and biogeography of pinus: an introduction. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 3–46

    Google Scholar 

  • Rigling A, Waldner PO, Forster T, Bräker OU, Pouttu A (2001) Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Can J Res 31:18–31. doi:10.1139/cjfr-31-1-18

    Article  Google Scholar 

  • Schroter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337. doi:10.1126/science.1115233

    Article  PubMed  Google Scholar 

  • Vieira J, Campelo F, Nabais C (2009) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees (Berl) 23:257–265. doi:10.1007/s00468-008-0273-0

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Spanish Ministry of Education and Science co-funded by FEDER program (projects: CGL2005-04270, CGL2007-65315-C03-02 and CGL2008-05112-C02-01). We also thank Elaine Rowe for her work in improving the English of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín De Luis.

Additional information

Communicated by H. Cochard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Luis, M., Novak, K., Čufar, K. et al. Size mediated climate–growth relationships in Pinus halepensis and Pinus pinea . Trees 23, 1065–1073 (2009). https://doi.org/10.1007/s00468-009-0349-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-009-0349-5

Keywords

Navigation