Skip to main content
Log in

Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Woody species populating the major Mediterranean ecosystems in the world are characterized by different levels of adaptation to the seasonal Mediterranean climate conditions. Many species of these ecosystems show wood features that allow high efficiency of transport when water is available, while maintaining hydraulic safety during drought periods. This study focuses on the anatomy of juvenile and mature wood of some species representative of continuous sequences of Mediterranean vegetation formations according to gradients of water availability, from xeric to relatively mesic: Cistus monspeliensis L., Rhamnus alaternus L., Myrtus communis L., Pistacia lentiscus L., Olea europaea L., Quercus ilex L., Fraxinus ornus L. and Ostrya carpinifolia L. Twigwood collected in Southern Italy was anatomically compared with the stemwood of the same species represented in the reference slide collection of the National Herbarium of the Netherlands (Lw). The “hydraulic distance” between the wood of main stems and twigs was estimated on the basis of suites of anatomical features related to water efficiency/safety. Although some attributes (i.e. porosity and type of imperforate tracheary elements) were similar in young twigs and older rings, other traits (i.e. vessel frequency and size) evidenced the different hydraulic properties of twig and stemwood. The difference between juvenile and mature structures was large in the species of the mesic end of the gradient while it was relatively small in those more xeric. This tendency is in agreement with the habit gradient from medium-sized trees to small evergreen/drought deciduous shrubs according to decreasing water availability in Mediterranean vegetation types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arambourg C, Arènes J, Depape G (1953) Contribution à l’étude des flores fossiles quaternaires de l’Afrique du nord. Archives du Muséum d’Histoire Naturelle de Paris. Editions du Muséum, Paris, France 2:1–81

  • Aronne G, De Micco V (2001) Seasonal dimorphism in the Mediterranean Cistus incanus L. subsp. incanus. Ann Bot 87:789–794

    Article  Google Scholar 

  • Axelrod DI (1975) Evolution and biogeography of Madro-Tethyan sclerophyll vegetation. Ann Mo Bot Gard 62:280–334

    Article  Google Scholar 

  • Baas P (1976) Some functional and adaptive aspects of vessel member morphology. In: Baas P, Bolton AJ, Calting DM (eds) Wood structure in biological and technological research. Leiden botanical series n. 3. Leiden University Press, The Hague, pp 157–181

    Google Scholar 

  • Baas P (1982) Systematic, phylogenetic and ecological wood anatomy. history and perspectives. In: Baas P (ed) New perspectives in wood anatomy. Nijhoff/Junk, The Hague, pp 23–58

    Google Scholar 

  • Baas P, Carlquist S (1985) A comparison of the ecological wood anatomy of the floras of Southern California and Israel. IAWA Bull n.s. 6(5):349–353

    Google Scholar 

  • Baas P, Schweingruber FH (1987) Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA Bull n.s. 8(3):245–274

    Google Scholar 

  • Baas P, Xinying Z (1986) Wood anatomy of trees and shrubs from China. I. Oleaceae. IAWA Bull n.s. 7(3):195–220

    Google Scholar 

  • Baas P, Werker E, Fahn A (1983) Some ecological trends in vessel characters. IAWA Bull n.s. 4(2–3):141–159

    Google Scholar 

  • Baas P, Esser PM, van der Westen MET, Zandee M (1988) Wood anatomy of the Oleaceae. IAWA Bull n.s. 9(2):103–182

    Google Scholar 

  • Baas P, Ewers FW, Davis SD, Wheeler EA (2004) Evolution of xylem physiology. In: Hemsley A, Poole I (eds) The evolution of plant physiology. Elsevier, Amsterdam, pp 273–295

    Chapter  Google Scholar 

  • Bailey IW, Tupper WW (1918) Size variation in tracheary cells. I. A comparison between the secondary xylem of vascular cryptogams, gymnosperms and angiosperms. Proc Am Acad Arts Sci 54:149–204

    Google Scholar 

  • Carlquist S (1966) Wood anatomy of Compositae: a summary, with comments on factors controlling wood evolution. Aliso 6(2):25–44

    Google Scholar 

  • Carlquist S (1975) Ecological strategies of xylem evolution. University of California Press, Berkeley

    Google Scholar 

  • Carlquist S (1977) Ecological factors in wood evolution, a floristic approach. Am J Bot 64:887–896

    Article  Google Scholar 

  • Carlquist S (1980) Further concepts in ecological wood anatomy, with comments on recent work in wood anatomy and evolution. Aliso 9:499–553

    Google Scholar 

  • Carlquist S (1983) Wood anatomy of Onagraceae: further species; root anatomy; significance of vestured pits and allied structures in dycotiledons. Ann Mo Bot Gard 69:755–769

    Article  Google Scholar 

  • Carlquist S (1984) Vessel grouping in dycotiledon wood: significance and relationship to imperforate tracheary elements. Aliso 10:505–525

    Google Scholar 

  • Carlquist S (1988) Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer, Berlin

    Google Scholar 

  • Carlquist S (1989) Adaptive wood anatomy of chaparral shrubs. In: Keely JE (ed) The California chaparral: paradigms re-examined. Los Angeles Country Museum of Natural History Contributions, Los Angeles, pp 25–35

    Google Scholar 

  • Carlquist S (1992) Wood anatomy in Solanaceae: a survey. Allertonia 6:261–279

    Google Scholar 

  • Carlquist S, Hoekman DA (1985) Ecological wood anatomy of the woody southern California flora. IAWA Bull n.s. 6:319–347

    Google Scholar 

  • Castro-Díez P, Villar-Salvador P, Pérez-Rontomé C, Maestro-Martínez M, Montserrat-Martí G (1998) Leaf morphology, leaf chemical composition and stem xylem characteristics in two Pistacia (Anacardiaceae) species along a climatic gradient. Flora 193:195–202

    Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrín EG (2004) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees-Struct Funct 18:83–92

    Article  Google Scholar 

  • Daget P (1977) Le bioclimat méditerranéen: caractères generaux, mode de caracterisation. Vegetatio 34:1–20

    Article  Google Scholar 

  • De Micco V, Toraldo G, Aronne G (2006) Method to classify xylem elements using cross sections of one-year-old branches in Mediterranean woody species. Trees-Struct Funct 20:474–482

    Google Scholar 

  • di Castri F (1981) Mediterranean-type shrublands of the world. In: di Castri F, Goodall DW, Specht RL (eds) Mediterranean-type shrublands. Ecosystems of the world. N. 11. Elsevier, Amsterdam, pp 1–52

    Google Scholar 

  • Ewers FW (1985) Xylem structure and water conduction in conifer trees, dicot trees, and lianas. IAWA Bull 6:309–317

    Google Scholar 

  • Ewers FW, Fisher JB (1991) Why vines have narrow stems: histological trends in Bauhinia. Oecologia 88:233–237

    Article  Google Scholar 

  • Fahn A, Werker E, Baas P (1986) Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. The Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Fisher JB, Goldstein G, Jones TJ, Cordell S (2007) Wood vessel diameter is related to elevation and genotype in the Hawaiian tree Metrosideros polymorpha (Myrtaceae). Am J Bot 94:709–715

    Article  Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4(2):97–115

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26(6):689–701

    PubMed  Google Scholar 

  • Hall W (1952) Comparative anatomy and phylogeny of the Betulaceae. Bot Gaz 113(3):235–270

    Article  Google Scholar 

  • Gartner BL (1995) Patterns of xylem variation within a tree and their hydraulic and mechanical consequences. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, pp 125–149

    Google Scholar 

  • Grosser D (1977) Die Hölzer Mitteleuropas. Springer, Heidelberg

    Google Scholar 

  • Jacobsen AL, Pratt RB, Ewers FW, Davis SD (2007a) Cavitation resistance among 26 chaparral species of southern California. Ecol Monogr 77(1):99–115

    Article  Google Scholar 

  • Jacobsen AL, Agenbag L, Esler KJ, Pratt RB, Ewers FW, Davis SD (2007b) Xylem density, biomechanics, and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa. J Ecol 95:171–183

    Article  Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. Principle and practice. Freeman WH & Company, San Francisco

    Google Scholar 

  • Lo Gullo MA, Salleo S, Piaceri EC, Rosso R (1995) Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris. Plant Cell Environ 18:661–669

    Article  Google Scholar 

  • Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phyl Evol 12:333–349

    Article  CAS  Google Scholar 

  • Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133:19–29

    Article  Google Scholar 

  • McCulloh KA, Sperry JS (2005) Patterns in hydraulic architecture and their implications for transport efficiency. Tree Physiol 25:257–267

    PubMed  Google Scholar 

  • McCulloh KA, Sperry JS, Adler FR (2004) Murray’s law and the hydraulic vs. mechanical functioning of wood. Funct Ecol 18:931–938

    Article  Google Scholar 

  • Nahal I (1981) The mediterranean climate from a biological viewpoint. In: di Castri F, Goodall DW, Specht RL (eds) Ecosystems of the world 11, Mediterranean-type shrublands. Elsevier, Amsterdam, pp 63–86

    Google Scholar 

  • Pignatti S (1982) Flora d’Italia. Edagricole, Bologna

    Google Scholar 

  • Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006) Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell Environ 29(8):1618–1628

    Article  PubMed  Google Scholar 

  • Poole I (1994) “Twig”—wood anatomical characters as palaeoecological indicators. Rev Palaeobot Palynol S1:33–52

    Article  Google Scholar 

  • Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007) Relationships among xylem transport, biomechanics, and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798

    Article  PubMed  CAS  Google Scholar 

  • Psaras GK, Sofroniou I (1999) Wood anatomy of Capparis spinosa from an ecological perspective. IAWA J 20(4):419–429

    Google Scholar 

  • Quézel P (1978) Analysis of the flora of Méditerranean and Saharan Africa. Ann Mo Bot Gard 65:479–534

    Article  Google Scholar 

  • Quézel P (1981) The study of plant groupings in the countries surrounding the Mediterranean: some methodological aspects. In: di Castri F, Goodall DW, Specht RL (eds) Mediterranean-type shrublands. Ecosystems of the world. N. 11. Elsevier, Amsterdam, pp 87–93

    Google Scholar 

  • Quézel P (1985) Definition of the Mediterranean region and the origin of its flora. In: Gómez-Campo C (eds) Plant conservation in the Mediterranean area. Dr W. Junk Publishers, Dordrecht, pp 9–24

    Google Scholar 

  • Quézel P, Médail F, Loisel R, Barbero M (1999) Biodiversity and conservation of forest species in the Mediterranean basin. Unasylva 197(50):21–28

    Google Scholar 

  • Raven PH (1973) The evolution of mediterranean floras. In: di Castri F, Mooney HA (eds) Mediterranean-type ecosystems. Origin and structure. Springer, Berlin, pp 213–224

    Google Scholar 

  • Salleo S, Lo Gullo MA (1993) Drought resistance strategies and vulnerability to cavitation of some Mediterranean sclerophyllous trees. In: Borghetti M, Grace J, Rasch A (eds) Water transport in plants under climatic stress. Cambridge University Press, Cambridge, pp 99–113

    Google Scholar 

  • Sastrapadja DS, Lamoureux C (1969) Variations in wood anatomy of Hawaiian Metrosideros (Myrtaceae). Annales Bogorienses 5(1):1–83

    Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemingsen EA (1965) Sap pressure in vascular plants. Science 148:339–345

    Article  PubMed  Google Scholar 

  • Schweingruber FH (1990) Anatomy of European woods. Paul Haupt Berne and Stuttgart Publishers, Stuttgart

    Google Scholar 

  • Sperry JS (2003) Evolution of water transport and xylem structure. Int J Plant Sci 164(3 suppl): S115–S127

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93(10):1490–1500

    Article  Google Scholar 

  • Suc JP (1984) Origin and evolution of Mediterranean vegetation and climate in Europe. Nature 307:429–432

    Article  Google Scholar 

  • Tippo O (1938) Comparative anatomy of the Moraceae and their presumed allies. Bot Gaz 100(1):1–99

    Article  Google Scholar 

  • Trifilò P, Lo Gullo MA, Nardini A, Pernice F, Salleo S (2007) Rootstock effects on xylem conduit dimensions and vulnerability to cavitation of Olea europaea L. Trees-Struct Funct 21:549–556

    Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40:19–38

    Article  Google Scholar 

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. Transley review no. 34. New Phytol 119:345–360

    Article  Google Scholar 

  • Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15(4):335–360

    Google Scholar 

  • Van den Oever L, Baas P, Zandee M (1981) Comparative wood anatomy of Symplocos and latitude and altitude of Provenance. IAWA Bull n.s. 2:3–24

    Google Scholar 

  • Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrín E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2024

    Article  PubMed  CAS  Google Scholar 

  • Villar-Salvador P, Castro-Díez P, Pérez-Rontomé C, Montserrat-Martí G (1997) Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees-Struct Funct 12:90–96

    Google Scholar 

  • Wagner KR, Frank FW, Davis SD (1998) Tradeoffs between hydraulic efficiency and mechanical strenght in the stems of four co-occurring species of chaparral shrubs. Oecologia 117:53–62

    Article  Google Scholar 

  • Wallace GD (1986) Wood anatomy of Cassiope (Ericaceae). Aliso 11:393–415

    Google Scholar 

  • Wheeler EA (1986) Vessels per square millimetre or vessel groups per square millimetre? IAWA Bull n. s. 7:73–74

    Google Scholar 

  • Yang S, Tyree MT (1993) Hydraulic resistance in Acer saccharum shoots and its influence on leaf water potential and transpiration. Tree Physiol 12:231–242

    PubMed  Google Scholar 

  • Yi T, Miller AJ, Wen J (2004) Phylogenetic and biogeographic diversification of Rhus (Anacardiaceae) in the Northern Hemisphere. Mol Phyl Evol 33:861–879

    Article  CAS  Google Scholar 

  • Young WC (1989) Roark’s formulas for stress and strain. McGraw-Hill, New York

    Google Scholar 

  • Zimmermann MH (1978) Hydraulic architecture of some diffuse-porous trees. Can J Bot 56:2286–2295

    Article  Google Scholar 

  • Zimmermann MH (1982) Functional anatomy of angiosperm trees. In: Baas P (ed) New perspectives in wood anatomy. Nijhoff/Junk, The Hague, pp 59–70

    Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

We wish to thank the European Union-funded Integrated Infrastructure Initiative grant which funded the access to the National Herbarium of the Netherlands through a SYNTHESYS grant (NL-TAF-1238). We would like to acknowledge all the scientists who supplemented the NHN collection with microscopic slides and specifically Fritz Schweingruber (Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland). We also thank Stefano Mazzoleni (University of Naples Federico II, Naples, Italy) for helpful discussions during the preparation of an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica De Micco.

Additional information

Communicated by H. Cochard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Micco, V., Aronne, G. & Baas, P. Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees 22, 643–655 (2008). https://doi.org/10.1007/s00468-008-0222-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-008-0222-y

Keywords

Navigation