Skip to main content
Log in

Temporary immersion systems (RITA®) for the improvement of cork oak somatic embryogenic culture proliferation and somatic embryo production

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Somatic embryogenesis in cork oak (Quercus suber L.) is an efficient tool that allows the production of large number of embryos from selected quality and productive trees. Temporary immersion systems (TIS) are an alternative to semi-solid or liquid culture that combine the advantages of liquid culture and avoid the associated problems. Parameters that affect the TIS multiplication efficiency of Q. suber L. embryogenic cultures were evaluated. Immersion frequencies of 1 min every 6 or 4 h increased the fresh weight 3.7 or 7.5-fold compared with an immersion frequency of 1 min every 12 h or cultures on semi-solid medium, respectively. The cellular fate of embryogenic cultures was also affected by the immersion frequency, 1 min every 6 h was the best for mass propagation of proliferative developmental stages (embryogenic calli and embryo clusters) while 1 min every 4 h promoted the formation of single, fully developed cotyledonary embryos. An initial amount of 1.5 g fresh weight of proliferative tissues produced the best results in RITA® containers while 0.5 g of embryogenic callus was the best for semi-solid cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albarrán J, Bertrand B, Lartaud M, Etienne H (2005) Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell Tissue Organ Cult 81:27–36

    Article  Google Scholar 

  • Barberini S, Savona M, Ruffoni B (2011) Temporary immersion culture of Lilium bulbiferum. Acta Hort (ISHS) 900:377–383

    CAS  Google Scholar 

  • Bueno MA, Astorga R, Manzanera JA (1992) Plant regeneration through somatic embryogenesis in Quercus suber. Physiol Plant 85:30–34

    Article  Google Scholar 

  • Bueno MA, Gomez A, Manzanera JA (2000) Somatic and gametic embryogenesis in Quercus suber L. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, forestry sciences, vol 6. Kluwer Academic Publishers, Dordrecht, pp 470–508

    Google Scholar 

  • Cabasson C, Alvard D, Dambier D, Ollitrault P, Teisson C (1997) Improvement of Citrus somatic embryo development by temporary immersion. Plant Cell Tissue Organ Cult 50:33–37

    Article  Google Scholar 

  • Colmenares M, Jiménez C (2003) Multiplicación in vitro Musa spp. Mediante sistema de inmersión temporal. Rev Fac Agron 20(4): 468–477. ISSN 0378-7818

    Google Scholar 

  • Escalant JV, Teisson C, Côte F (1994) Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.). In Vitro Cell Dev Biol Plant 30:181–186

    Google Scholar 

  • Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult 69:215–231

    Article  Google Scholar 

  • Etienne H, Lartaud M, Michaux-Ferrière N, Carron MP, Berthouly M, Teisson C (1997) Improvement of somatic embryogenesis in Hevea brasiliensis (Müll. Arg.) using the temporary immersion technique. In Vitro Cell Dev Biol Plant 33:81–87

    Article  Google Scholar 

  • Fernández-Guijarro B, Celestino C, Toribio M (1995) Influence of external factor son secondary embryogenesis and germination in somatic embryos from leaves of Quercus suber. Plant Cell Tissue Organ Cult 41:99–106

    Article  Google Scholar 

  • Fraga M, Cañal MJ, Rodríguez R (2002) Phase change related epigenetic and physiological changes in Pinus radiata D. Don. Planta 215:672–678

    Article  PubMed  CAS  Google Scholar 

  • García-Águila L, Gómez-Kosky R, Alvarado-Capó Y, Sarría Z, Reyes M (2010) Effect of inoculum density on formation and morphology of plantain somatic embryos (Musa spp. AAAB, cv. Hybrid ‘FHIA-21’). Rev Colomb Biotecnol 12(2):240–247. ISSN: 0123-3475

    Google Scholar 

  • Gatica-Arias AM, Arrieta-Espinoza G, Espinoza AM (2008) Plant regeneration via indirect somatic embryogenesis and optimization of genetic transformation in Coffea arabica L. cvs. Caturra and Catuai. Electron J Biotechnol. doi:10.2225/vol11-issue1-fulltext-9

  • Hernández I, Celestino C, Toribio M (2003) Vegetative propagation of Quercus suber L. by somatic embryogenesis I. Factors affecting the induction in leaves from mature cork oak trees. Plant Cell Rep 21:759–764

    PubMed  Google Scholar 

  • Higashi K, Daita M, Kobayashi T, Sasaki K, Harada H, Kamada H (1998) Inhibitory conditioning for carrot somatic embryogenesis in high-cell-density cultures. Plant Cell Rep 18:2–6

    Article  CAS  Google Scholar 

  • Jiménez E, Pérez N, DeFeria M, Barbón R, Capote A, Chávez H, Quiala E, Pérez J (1999) Improved production of potato microtuber using a temporary immersion system. Plant Cell Tissue Organ Cult 59:19–23

    Article  Google Scholar 

  • Jiménez J, López-Vela D, Ruiz-Galea M, Celestino C, Toribio M, Alegre J (2012) Embryogenic suspensions of adult cork oak: the first step towards mass propagation. Trees Struct Funct. doi:10.1007/s00468-012-0763-y

  • Kobayashi T, Higashi K, Sasaki K, Asami T, Yoshida S, Kamada H (2000) Purification from conditioned medium and chemical identification of a factor that inhibits somatic embryogenesis in carrot. Plant Cell Physiol 41(3):268–273

    Article  PubMed  CAS  Google Scholar 

  • Maës O, Coutos-Thévenot P, Jouenne T, Boulay M, Guern J (1997) Influence of extracellular proteins, proteases and protease inhibitors on gravepine somatic embryogenesis. Plant Cell Tissue Organ Cult 50:97–105

    Article  Google Scholar 

  • Mallón R, Covelo P, Vieitez AM (2012) Improving secondary embryogenesis in Quercus robur: application of temporary immersion for mass propagation. Trees Struct Funct 26:731–741. doi:10.1007/s00468-011-0639-6

    Article  Google Scholar 

  • Manzanera JA, Astorga R, Bueno MA (1993) Somatic embryo induction and germination in Quercus suber L. Silvae Genet 42(2–3):90–93. ISSN: 0037-5349

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth on bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niemenak N, Saare-Surminski K, Rohsius C, Ndoumou DO, Lieberei R (2008) Regeneration of somatic embryos in Theobroma cacao L. in temporary immersion bioreactor and analyses of free amino acids in different tissues. Plant Cell Rep 27:667–676

    Article  PubMed  CAS  Google Scholar 

  • Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue Organ Cult 81:287–300

    Article  Google Scholar 

  • Pintos B, Bueno MA, Cuenca B, Manzanera JA (2008) Synthetic seed production from encapsulated somatic embryos of cork oak (Quercus suber L.) and automated growth monitoring. Plant Cell Tissue Organ Cult 95(2):217–225. doi:10.1007/s11240-008-9435-4

    Article  Google Scholar 

  • Pintos B, Manzanera JA, Bueno MA (2010) Oak somatic and gametic embryos maturation is affected by charcoal and specific amino acids mixture. Ann For Sci 67(2):205. doi:10.1051/forest/2009098

    Article  Google Scholar 

  • Roels S, Escalona M, Cejas I, Noceda C, Rodríguez R, Cañal MJ, Sandoval J, Debergh P (2005) Optimization of plantain (Musa AAb) micropropagation by temporary immersion system. Plant Cell Tissue Organ Cult 82:57–66

    Article  CAS  Google Scholar 

  • Ruffoni B, Pamato M, Giovannini A, Brea M (2008) Gladiolus micropropagation in temporary immersion system. Propag Ornam Plants 8(2):102–104. ISSN: 1311-9109

    Google Scholar 

  • Sommer HE, Brown CL, Kormanik PP (1975) Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue culture in vitro. Bot Gaz 136:196–200

    Article  Google Scholar 

  • Teisson C, Alvard D (1995) A new concept of plant in vitro cultivation liquid medium: temporary immersion. In: Terzi M et al (eds) Current issues in plant molecular and cellular biology. Kluwer Academic Publishers, Dordrecht, pp 105–110

    Chapter  Google Scholar 

  • Toribio M, Celestino C, Molinas M (2005) Cork oak, Quercus suber L. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Netherlands, pp 445–457

    Chapter  Google Scholar 

  • Umehara M, Ogita S, Sasamoto H, Kamada H (2004) Inhibitory factor(s) of somatic embryogenesis regulated suspensor differentiation in suspension culture of Japanese larch (Larix leptolepis GORDON). Plant Biotechnol 21(2):87–94

    Article  CAS  Google Scholar 

  • Vieitez AM, Corredoira E, Martínez MT, San-José MC, Sánchez C, Valladares S, Vidal N, Ballester A (2012) Application of biotechnological tools to Quercus improvement. Eur J For Res 131:519–539. doi:10.1007/s10342-011-0526-0

    Article  CAS  Google Scholar 

  • von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928

    Article  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Article  Google Scholar 

  • Wilhem E (2000) Somatic embryogenesis in oak (Quercus spp.). In Vitro Cell Dev Biol Plant 36:349–357

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Spanish national projects AGL2007-62907 and AGL2010-22351-C03-01. FICYT foundation supported the fellowship of M. Pérez. We are grateful to Elisa Quiala for her assistance during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Pérez.

Additional information

Communicated by K. Klimaszewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, M., Bueno, M.A., Escalona, M. et al. Temporary immersion systems (RITA®) for the improvement of cork oak somatic embryogenic culture proliferation and somatic embryo production. Trees 27, 1277–1284 (2013). https://doi.org/10.1007/s00468-013-0876-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0876-y

Keywords

Navigation