Skip to main content

Advertisement

Log in

Long-term physiological and morphological acclimation by the evergreen shrub Buxus sempervirens L. to understory and canopy gap light intensities

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Physiological and morphological plasticity are essential for growth and reproduction in contrasting light environments. In dry forest ecosystems, light generalists must also cope with the trade-offs involved in synchronous acclimation to light availability and drought. To understand how the broadleaf evergreen tree-shrub Buxus sempervirens L. (common box) inhabits both understory and successional terrain of Mediterranean forest, we measured photosynthesis–fluorescence light response, morphological traits and architectural characteristics across a light gradient. Our results show that B. sempervirens exhibits stress resistance syndrome, with little change in net photosynthesis rate across a light availability gradient, due to compensatory physiological and morphological acclimation. Light energy processing and dissipation potential were highest in leaves of well-illuminated plants, with higher electron transport rate, fraction of open photosystem II reaction centres, non-photochemical quenching, photorespiration and dark respiration. In contrast, traits reducing light capture efficiency were observed in high light shrubs, including higher leaf mass per unit area, leaf clumping, leaf inclination and branch inclination. We suggest that both physiological and morphological plasticity are required for B. sempervirens to survive across a light gradient in a dry forest ecosystem, while exhibiting homoeostasis in photosynthetic gas exchange. We further speculate that the low growth rate of B. sempervirens is effective in full sun only due to a lack of competition in low resource microsites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali MS, Kikuzawa K (2005) Plasticity in leaf area density within the crown of Aucuba japonica growing under different light levels. J Plant Res 118:307–316

    Article  PubMed  Google Scholar 

  • Allard V, Ourcival JM, Rambal S, Joffre R, Rocheteau A (2008) Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France. Glob Change Biol 14:714–725. doi:10.1111/j.1365-2486.2008.01539.x

    Article  Google Scholar 

  • Aranda I, Castro L, Pardos M, Gil L, Pardos JA (2005) Effects of the interaction between drought and shade on water relations, gas exchange and morphological traits in cork oak (Quercus suber L.) seedlings. For Ecol Manag 210:117–129. doi:10.1051/forest:2005033

    Article  Google Scholar 

  • Aranda I, Robson M, Rodríguez-Calcerrada J, Valladares F (2008) Limited capacity to cope with excessive light in the open and with increased drought in the shade in Mediterranean Ilex aquifolium populations. Trees Struct Funct 22:375–384. doi:10.1007/s00468-007-0192-5

    Article  Google Scholar 

  • Aussenac G, Valette JC (1982) Comportement hydrique estival de Cedrus atlantica Manetti, Quercus ilex L. et Quercus pubescens Willd. et de divers pins dans le Mont Ventoux. Ann Sci Forest 39:41–62

    Article  Google Scholar 

  • Bilger W, Bjorkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbency changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  Google Scholar 

  • Brooks JR, Sprugel DG, Hinckley TM (1996) The effects of light acclimation during and after foliage expansion on photosynthesis of Abies amabilis foliage within the canopy. Oecologia 107:21–32

    Article  Google Scholar 

  • Chapin FS, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:S78–S92

    Article  Google Scholar 

  • Coopman RE, Fuentes-Neira FP, Briceño VF, Cabrera HM, Corcuera LJ, Bravo LA (2010) Light energy partitioning in photosystems I and II during development of Nothofagus nitida growing under different light environments in the Chilean evergreen temperate rain forest. Trees Struct Funct 24:247–259. doi:10.1007/s00468-009-0395-z

    Article  CAS  Google Scholar 

  • Coste S, Roggy JC, Sonnier G, Dreyer E (2010) Similar irradiance-elicited plasticity of leaf traits in saplings of 12 tropical rainforest tree species with highly different leaf mass to area ratio. Funct Plant Biol 37:342–355. doi:10.1051/forest/2009062

    Article  Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  CAS  Google Scholar 

  • Craine JM, Reich PB (2005) Leaf-level compensation points in shade-tolerant woody seedlings. New Phytol 166:710–713. doi:10.1111/j.1469-8137.2005.01420.x

    Article  PubMed  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Domingo F, Villagarcía L, Brenner A, Puigdefabregas J (2000) Measuring and modelling the radiation balance of a heterogeneous shrubland. Plant Cell Environ 23:27–38. doi:10.1046/j.1365-3040.2000.00532

    Article  Google Scholar 

  • Ehleringer JR, Comstock JP (1989) Stress tolerance and adaptive variation in leaf absorptance and leaf angle. In: Keeley SC (ed) The California chaparal: paradigms reexamined, Science Series No. 34. Natural History Museum of Los Angeles County, Los Angeles, pp 22–24

    Google Scholar 

  • Evans JR (1989) Partitioning of nitrogen between and within leaves grown under different irradiances. Aust J Plant Physiol 16:533–548

    Article  Google Scholar 

  • Falster DS, Westoby M (2003) Leaf size and angle vary widely across species: what consequences for light interception? New Phytol 158:509–525

    Article  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Feng YL, Cao KF, Zhang JL (2004) Photosynthetic characteristics, dark respiration and leaf mass per unit area in species grown under three irradiances. Photosynthetica 42:431–437. doi:10.1023/B:PHOT.0000046163.83729.e5

    Article  CAS  Google Scholar 

  • Frak E, Le Roux X, Millard P, Dreyer E, Jaouen G, Saint-Joanis B, Wendler R (2001) Changes in total leaf nitrogen and partitioning of leaf nitrogen drive photosynthetic acclimation to light in fully developed walnut leaves. Plant Cell Environ 24:1279–1288. doi:10.1046/j.0016-8025.2001.00784.x

    Article  CAS  Google Scholar 

  • Galmés J, Abadia A, Cifre J, Medrano H, Flexas J (2007) Photoprotection processes under water stress and recovery in Mediterranean plants with different growth forms and leaf habits. Physiol Plant 130:495–510. doi:10.1111/j.1399-3054.2007.00919.x

    Article  Google Scholar 

  • García-Plazaola JI, Olano JM, Hernández A, Becerril JM (2003) Photoprotection in evergreen Mediterranean plants during sudden periods of intense cold weather. Trees Struct Funct 17:285–291

    Google Scholar 

  • García-Plazaola JI, Esteban R, Hormaetxe K, Becerril JM (2008) Seasonal reversibility of acclimation to irradiance in leaves of common box (Buxus sempervirens L.) in a deciduous forest. Flora 203:254–260. doi:10.1016/j.flora.2007.03.007

    Google Scholar 

  • Givnish TJ, Montgomery RA, Goldstein G (2004) Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses and whole-plant compensation points. Am J Bot 91:228–246

    Article  PubMed  CAS  Google Scholar 

  • Gratani L, Covone F, Larcher W (2006) Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis. Trees Struct Funct 20:549–558. doi:10.1007/s00468-006-0070-6

    Article  Google Scholar 

  • Gulías J, Flexas J, Abadía A, Medrano H (2002) Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris, an endemic Balearic species. Tree Physiol 22:687–697

    Article  PubMed  Google Scholar 

  • Hacke UG, Sperry JS, Pittermann J (2000) Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic Appl Ecol 1:31–41

    Article  Google Scholar 

  • He WM, Dong M (2003) Physiological acclimation and growth response to partial shading in Salix matsudana in the Mu Us Sandland in China. Trees Struct Funct 17:87–93. doi:10.1007/s00468-002-0217-z

    Article  Google Scholar 

  • Hikosaka K (2003) A model of dynamics of leaves and nitrogen in a plant canopy: an integration of canopy photosynthesis, leaf life span, and nitrogen use efficiency. Am Nat 162:149–164. doi:10.1086/376576

    Article  PubMed  Google Scholar 

  • Hormaetxe K, Becerril JM, Fleck I, Pinto M, García-Plazaola JI (2005) Functional role of red (retro)-carotenoids as passive light filters in the leaves of Buxus sempervirens L.: increased protection of photosynthetic tissues? J Exp Bot 56:2629–2636. doi:10.1093/jxb/eri255

    Google Scholar 

  • Iqbal M (1983) An introduction to solar radiation. Academic Press, New York

    Google Scholar 

  • Katul G, Leuning R, Oren R (2003) Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant Cell Environ 26:339–350

    Google Scholar 

  • Kern SO, Hovenden MJ, Jordan GJ (2004) The impacts of leaf shape and arrangement on light interception and potential photosynthesis in southern beech (Nothofagus cunninghamii). Funct Plant Biol 31:471–480

    Article  Google Scholar 

  • Kitajima K (1994) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419–428

    Article  Google Scholar 

  • Kobe RK, Pacala SW, Silander JA, Canham CD (1995) Juvenile tree survivorship as a component of shade tolerance. Ecol Appl 5:517–532

    Article  Google Scholar 

  • Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  PubMed  CAS  Google Scholar 

  • Krömer S (1995) Respiration during photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 46:45–70

    Article  Google Scholar 

  • Külheim C, Ågren J, Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297:91–93. doi:10.1126/science.1072359

    Article  PubMed  Google Scholar 

  • Larjavaara M, Muller-Landau HC (2010) Rethinking the value of high wood density. Funct Ecol 24:701–705. doi:10.1111/j.1365-2435.2010.01698.x

    Article  Google Scholar 

  • Limousin JM, Misson L, Lavoir AV, Martin NK, Rambal S (2010) Do photosynthetic limitations of evergreen Quercus ilex leaves change with long-term increased drought severity? Plant Cell Environ 33:863–875. doi:10.1111/j.1365-3040.2009.02112.x

    PubMed  CAS  Google Scholar 

  • Loomis RS (1997) On the utility of nitrogen in leaves. Proc Natl Acad Sci USA 94:13378–13379

    Article  PubMed  CAS  Google Scholar 

  • Lortie CJ, Aarssen LW (1996) The specialization hypothesis for phenotypic plasticity in plants. Int J Plant Sci 157:484–487

    Article  Google Scholar 

  • Lusk CH, Reich PB, Montgomery RA, Ackerly DD, Cavender-Bares J (2008) Why are evergreen leaves so contrary about shade? Trends Ecol Evol 23:299–303. doi:10.1016/j.tree.2008.02.006

    Article  PubMed  Google Scholar 

  • Machado JL, Reich PB (1999) Evaluation of several measures of canopy openness as predictors of photosynthetic photon-flux density in deeply shaded conifer-dominated forest understory. Can J For Res 29:1438–1444

    Article  Google Scholar 

  • Matos FS, Wolfgramm R, Goncalves FV, Cavatte PC, Ventrella MC, DaMatta FM (2009) Phenotypic plasticity to light in the coffee tree. Environ Exp Bot 67:421–427. doi:10.1016/j.envexpbot.2009.06.018

    Article  CAS  Google Scholar 

  • Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K (2009) Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Funct Plant Biol 36:20–36. doi:10.1071/FP08214

    Article  CAS  Google Scholar 

  • Mediavilla S, Escudero A, Heilmeier H (2001) Internal leaf anatomy and photosynthetic resource-use efficiency: interspecific and intraspecific comparisons. Tree Physiol 21:251–259

    Article  PubMed  CAS  Google Scholar 

  • Meinzer FC, Rundel PW, Goldstein G, Sharifi MR (1992) Carbon isotope composition in relation to leaf gas-exchange and environmental conditions in Hawaiian Metrosideros polymorpha populations. Oecologia 91:305–311. doi:10.1007/BF00317617

    Article  Google Scholar 

  • Misson L, Limousin JM, Rodriguez R, Letts MG (2010) Leaf physiological responses to extreme droughts in Mediterranean Quercus ilex forest. Plant Cell Environ. doi:10.1111/j.1365-3040.2010.02193.x

  • Niinemets Ü, Kull O (1998) Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity. Tree Physiol 21:899–914

    Article  Google Scholar 

  • Niinemets Ü, Kull O (2001) Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiol 21:1231–1244

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü, Valladares F (2004) Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Plant Biol 6:254–268. doi:10.1055/s-2004-817881

    Article  PubMed  CAS  Google Scholar 

  • Oertli JJ, Lips SH, Agami M (1990) The strength of sclerophyllous cells to resist collapse due to negative turgor pressure. Acta Oecol 11:281–289

    Google Scholar 

  • Ögren E, Rosenqvist E (1992) On the significance of photoinhibition of photosynthesis in the field and its generality among species. Photosynth Res 33:63–71

    Article  Google Scholar 

  • Ort DR (2001) When there is too much light. Plant Physiol 125:29–32

    Article  PubMed  CAS  Google Scholar 

  • Padmasree K, Padmavathi L, Raghavendra AS (2002) Essentiality of mitochondrial oxidative metabolism for photosynthesis: optimization of carbon assimilation and protection against photoinhibition. Crit Rev Biochem Mol 37:71–119

    Article  CAS  Google Scholar 

  • Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. New Phytol 166:791–800. doi:10.1111/j.1469-8137.2005.01328.x

    Article  PubMed  Google Scholar 

  • Peguero-Pina JJ, Sancho-Knapik D, Morales F, Flexas J, Gil-Pelegrín E (2009) Differential photosynthetic performance and photoprotection mechanisms of three Mediterranean evergreen oaks under severe drought stress. Funct Plant Biol 36:453–462. doi:10.1071/FP08297

    Article  Google Scholar 

  • Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588. doi:10.1111/j.1469-8137.2009.02830.x

    Article  PubMed  Google Scholar 

  • Puértolas J, Oliet JA, Jacobs DF, Benito LF, Peñuelas JL (2010) Is light the key factor for success of tube shelters in forest restoration plantings under Mediterranean climates? Forest Ecol Manag 260:610–617. doi:10.1016/j.foreco.2010.05.017

    Article  Google Scholar 

  • Quézel P, Médail (2003) Ecologie et biogéographie des forêts du bassin méditerranéen. Elsevier (Collection Environment), Paris

  • Rambal S, Ourcival JM, Joffre R, Mouillot F, Nouvellon Y, Reichstein M, Rocheteau A (2003) Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy. Glob Change Biol 9:1813–1824. doi:10.1111/j.1365-2486.2003.00687.x

    Article  Google Scholar 

  • Rodríguez-Calcerrada J, Pardos JA, Gil L, Aranda I (2007) Acclimation to light in seedlings of Quercus petraea (Mattuschka) Liebl. and Quercus pyrenaica Willd. planted along a forest-edge gradient. Trees Struct Funct 21:45–54. doi:10.1007/s00468-006-0095-x

    Google Scholar 

  • Rodríguez-Calcerrada J, Pardos JA, Gil L, Aranda I (2008a) Ability to avoid water stress in seedlings of two oak species is lower in a dense forest understory than in a medium canopy gap. For Ecol Manag 255:421–430. doi:10.1016/j.foreco.2007.09.009

    Article  Google Scholar 

  • Rodríguez-Calcerrada J, Reich PB, Rosenqvist E, Pardos JA, Cano FJ, Aranda I (2008b) Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak. Tree Physiol 28:761–771. doi:10.1093/treephys/28.5.761

    Article  PubMed  Google Scholar 

  • Sack L, Grubb PJ, Marañón T (2003) The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain. Plant Ecol 168:139–163. doi:10.1023/A:1024423820136

    Article  Google Scholar 

  • Schurr U, Walter A, Rascher U (2006) Functional dynamics of plant growth and photosynthesis—from steady-state to dynamics—from homogeneity to heterogeneity. Plant Cell Environ 29:340–352. doi:10.1111/j.1365-3040.2005.01490.x

    Article  PubMed  CAS  Google Scholar 

  • Smith T, Huston M (1989) A theory of the spatial and temporal dynamics of plant communities. Vegetatio 83:49–69

    Article  Google Scholar 

  • Valentini R, Epron D, de Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ 18:631–640

    Article  CAS  Google Scholar 

  • Valladares F, Niinemets U (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Syst 39:237–257. doi:10.1146/annurev.ecolsys.39.110707.173506

    Article  Google Scholar 

  • Valladares F, Martínez-Ferri E, Balaguer L, Pérez-Corona E, Manrique E (2000a) Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource strategy? New Phytol 148:79–91. doi:10.1046/j.1469-8137.2000.00737.x

    Article  CAS  Google Scholar 

  • Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000b) Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81:1925–1936. doi:10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2

    Article  Google Scholar 

  • Valladares F, Chico JM, Aranda I, Balaguer L, Dizengremel P, Manrique E, Dryer E (2002) The greater seedling high light tolerance of Quercus robur over Fagus sylvatica is linked to greater physiological plasticity. Trees Struct Funct 16:395–403. doi:10.1007/s00468.002.0184.4

    CAS  Google Scholar 

  • Valladares F, Arrieta S, Aranda I, Sánchez-Gómez D, Tena D, Suárez F, Pardos JA (2005) Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Ilex aquifolium in continental Mediterranean sites. Tree Physiol 25:1041–1052. doi:10.1093/treephys/25.8.1041

    Article  PubMed  CAS  Google Scholar 

  • Walters MB, Reich PB (1996) Are shade tolerance, survival and growth linked? Low light and nitrogen effects on hardwood seedlings. Ecology 77:841–853

    Article  Google Scholar 

  • Werner C, Ryel RJ, Correia O, Beyschlag W (2001) Structural and functional variability within the canopy and its relevance for carbon gain and stress avoidance. Acta Oecol 22:129–138

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Google Scholar 

Download references

Acknowledgments

This project was supported by funding from the University of Lethbridge Research Fund (MGL), photosynthesis equipment purchased through Western Economic Diversification Canada (MGL), a postdoctoral fellowship from the Spanish Ministry of Science and Innovation (JR-C) and a scholarship from the Regional Government of Extremadura (VR). We thank Eva Rosenqvist for helpful advice on the construction of photosynthesis–fluorescence light response curves. This work is a contribution to the Drought+ research program (ANR-06-VULN-003-01), at the Centre d’Ecologie Fonctionnelle et Evolutive of the Centre National de la Recherche Scientifique (CEFE-CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew G. Letts.

Additional information

Communicated by W. Bilger.

M. G. Letts and J. Rodríguez-Calcerrada contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement I (XLS 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letts, M.G., Rodríguez-Calcerrada, J., Rolo, V. et al. Long-term physiological and morphological acclimation by the evergreen shrub Buxus sempervirens L. to understory and canopy gap light intensities. Trees 26, 479–491 (2012). https://doi.org/10.1007/s00468-011-0609-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0609-z

Keywords

Navigation