Skip to main content
Log in

A theory of the spatial and temporal dynamics of plant communities

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

An individual-based model of plant competition for light that uses a definition of plant functional types based on adaptations for the simultaneous use of water and light can reproduce the fundamental spatial and temporal patterns of plant communities. This model shows that succession and zonation result from the same basic processes. Succession is interpreted as a temporal shift in species dominance, primarily in response to autogenic changes in light availability. Zonation is interpreted as a spatial shift in species dominance, primarily in response to the effect of allogenic changes in water availability on the dynamics of competition for light. Patterns of succession at different points along a moisture gradient can be used to examine changes in the ecological roles of various functional types, as well as to address questions of shifts in patterns of resource use through time.

Our model is based on the cost-benefit concept that plant adaptations for the simultaneous use of two or more resources are limited by physiological and life history constraints. Three general sets of adaptive constraints produce inverse correlations in the ability of plants to efficiently use (1) light at both high and low availability, (2) water at both high and low availability, and (3) both water and light at low availabilities.

The results of this type of individual-based model can be aggregated to examine phenomena at several levels of system organization (i.e., subdisciplines of ecology), including (1) plant growth responses over a range of environmental conditions, (2) population dynamics and size structure, (3) experimental and field observations on the distribution of species across environmental gradients, (4) studies of successional pattern, (5) plant physiognomy and community structure across environmental gradients, and (6) nutrient cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AberJ. D., BotkinD. B. & MelilloJ. M. 1979. Predicting the effects of different harvesting regimes on productivity and yield in northern hardwoods. Can. J. For. Res. 9: 10–14.

    Google Scholar 

  • AberJ. D., MelilloJ. M. & FedererC. A. 1982. Predicting the effects of rotation length, harvest intensity, and fertilization on fiber yield from northern hardwood forests in New England. For. Sci. 28: 31–45.

    Google Scholar 

  • AcocksJ. P. H. 1975. Veld types of South Africa. Mem. of the Bot. Surv. S. Africa. 40. Govt. Printer, Pretoria.

    Google Scholar 

  • AuclairA. N. & GoffF. G. 1971. Diversity relations in the upland forests of the western Great Lakes area. Am. Nat. 105: 499–528.

    Google Scholar 

  • AungL. H. 1974. Root-shoot relationships. In: CarsonE. W. (ed.), The plant root and its environment. pp. 29–61. University Press, Virginia.

    Google Scholar 

  • AustinM. P. 1982. Use of a relative physiological performance value in the prediction of performance in multispecies mixtures from monoculture performance. J. Ecol. 70: 559–570.

    Google Scholar 

  • AustinM. P. 1985. Continuum concept, ordination methods, and niche theory. Ann. Rev. Ecol. Syst. 16: 39–61.

    Google Scholar 

  • AustinM. P., 1987. Models for analysis of species' response to environmental gradients. Vegetatio 69: 33–45.

    Google Scholar 

  • AustinM. P. & AustinB. O. 1980. Behaviour of experimental plant communities along a nutrient gradient. J. Ecol. 68: 891–918.

    Google Scholar 

  • AustinM. P., GrovesR. H., FrescoL. F. M. & KayeP. E. 1985. Relative growth of six thistle species along a nutrient gradient with multispecies competition. J. Ecol. 73: 667–684.

    Google Scholar 

  • AustinM. P. & SmithT. M. 1989. A new model for the continuum concept. Vegetatio 83: 35–47.

    Google Scholar 

  • BazzazF. A. 1979. The physiological ecology of plant succession. Ann. Rev. Ecol. Syst. 10: 351–371.

    Google Scholar 

  • BazzazF. A. & PickettS. T. A. 1980. Physiological ecology of tropical succession: A comparative review. Ann. Rev. Ecol. and Syst. 11: 287–310.

    Google Scholar 

  • BazzazF. A., ChiarielloN. R., ColeyP. D. & PitelkaL. F. 1987. Allocating resources to reproduction and defense. BioScience 37: 58–67.

    Google Scholar 

  • BazzazF. A. & ReekieE. G. 1985. The meaning and measurement of reproductive effort in plants. In: WhiteJ. (ed.), Studies on plant demography: a festschrift for John L. Harper. pp. 373–387. Academic Press, London.

    Google Scholar 

  • BloomA. J., ChapinF. S. & MooneyH. A. 1985. Resource limitation in plants-an economic analysis. Ann. Rev. Ecol. Syst. 16: 363–392.

    Google Scholar 

  • BoardmanN. K. 1977. Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant Physiol. 28: 355–377.

    Google Scholar 

  • BormannF. H. & LikensG. E., 1979. Pattern and process in a forested ecosystem. Springer-Verlag, New-York.

    Google Scholar 

  • BotkinD. B., JanakJ. F. & WallisJ. R. 1972. Some ecological consequences of a computer model of forest growth. J. Ecol. 60: 849–872.

    Google Scholar 

  • BoxE. O. 1981. Microclimate and plant form. Junk, The Hague.

    Google Scholar 

  • BradshawA. D., ChadwickM. J., JowettD. & SnaydonR. W. 1964. Experimental investigations into the mineral nutrition of several grass species. IV. Nitrogen level. J. Ecol. 52: 665–676.

    Google Scholar 

  • BrokawN. V. L. 1985a. Gap-phase regeneration in a tropical forest. Ecol. 66: 682–687.

    Google Scholar 

  • BrokawN. V. L. 1985b. Treefalls, regrowth, and community structure in tropical forests. In: PickettS. T. A. & WhiteP. S. (eds), The ecology of natural disturbance and patch dynamics. [?]pp. 101–108. Academic Press, New York.

    Google Scholar 

  • BrunW. A. & CooperR. L. 1967. Effects of light intensity and carbon dioxide concentration on photosynthetic rate of soybean. Crop. Sci. 7: 451–454.

    Google Scholar 

  • BryantJ. P., ChapinF. S. & KleinD. R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357–368.

    Google Scholar 

  • BudowskiG. 1965. Distribution of tropical American trees in the light of successional process. Turrialba 15: 40–42.

    Google Scholar 

  • BudowskiG. 1970. The distinction between old secondary and climax species in tropical Central American lowland forests. Trop. Ecol. 11: 44–48.

    Google Scholar 

  • ChapinF. S. 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233–260.

    Google Scholar 

  • ChapinF. S., VitousekP. M. & VanCleveK. 1986. The nature of nutrient limitation in plant communities. Am. Nat. 127: 48–58.

    Google Scholar 

  • ChapinF. S., BloomA. J., FieldC. B. & WaringR. H. 1987. Plant responses to multiple environmental factors. BioScience 37: 49–57.

    Google Scholar 

  • ChazdonR. L. 1986. The costs of leaf support in understory palms: economy versus safety. Am. Nat. 127: 9–30.

    Google Scholar 

  • ChristensenN. L. & PeetR. K. 1984. Convergence during secondary forest succession. J. Ecol. 72: 25–36.

    Google Scholar 

  • ClementsF. E. 1916. Plant succession. Carnegie Inst. Washington Publ. 242: 1–512.

    Google Scholar 

  • ClementsF. E., WeaverJ. E. & HansonH. C. 1929. Plant Competition. Carnegie Inst. Washington Publ. 398: 1–340.

    Google Scholar 

  • ColeyP. D., BryantJ. P. & ChapinF. S. 1985. Resource availability and plant antiherbivore defense. Science 230: 895–899.

    Google Scholar 

  • ConnellJ. H. 1972. Community interactions on marine rocky intertidal shores. Ann. Rev. Ecol. Syst. 3: 169–192.

    Google Scholar 

  • CowanI. R. 1982. Regulation of water use in relation to carbon gain in higher plants. In: LangeO. L., NobelP. S., OsmondC. B. & ZieglerH. (eds) Physiological plant ecology II. Water relations and carbon assimilation. pp. 589–613. Springer-Verlag, Berlin.

    Google Scholar 

  • CowanI. R. 1986. Economics of carbon fixation in higher plants. In: GivnishT. J. (ed.), On the economy of plant form and function. pp. 133–170. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • DarwinC., 1859. The origin of species by means of natural selection or the preservation of favored races in the struggle for life. Murray, London.

    Google Scholar 

  • DaubenmireR. F. 1947. Plants and environment: a textbook of plant autecology. Wiley, New York.

    Google Scholar 

  • DeAngelisD. L. & WaterhouseJ. C. 1987. Equilibrium and nonequilibrium concepts in ecological models. Ecol. Monogr. 57: 1–21.

    Google Scholar 

  • DruryW. H. & NisbetI. T. C. 1973. Succession. J. Arnold Arbor. Harv. Univ. 54: 331–368.

    Google Scholar 

  • EhleringerJ. R. 1984. Intraspecific competitive effects on water relations, growth, and reproduction in Encelia farinosa. Oecologia 63: 153–158.

    Google Scholar 

  • EhleringerJ. R., PearcyR. W. & MooneyH. A. 1986. Recommendations of the workshop on the future development of plant physiological ecology. Bull. Ecol. Soc. Am. 67: 48–58.

    Google Scholar 

  • EllenbergH. 1953. Physiologisches und ökologisches Verhalten derselben Pflanzenarten. Berichte der Deutschen Botanischen Gesellschaft 65: 351–362.

    Google Scholar 

  • EllenbergH. 1954. Über einige Fortschritte der Kausalen Vegetationskunde. Vegetatio 5/6: 199–211.

    Google Scholar 

  • EllenbergH. 1978. Vegetation Mitteleuropas mit den Alpen in ökologischer sicht. Ulmer, Stuttgart.

    Google Scholar 

  • EvansJ. R. 1983. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum). Plant Physiol. 72: 297–302.

    Google Scholar 

  • FarquharG. D. & SharkeyT. D. 1982. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 33: 317–345.

    Google Scholar 

  • FarquharG. D. & vonCaemmererS. 1982. Modelling of photosynthetic response to environmental conditions. In: LangeO. L., NobelP. S., OsmondC. B. & ZieglerH. (eds), Physiological plant ecology, encycl. plant physiol. (NS) Vol. 12B. pp. 549–587. Springer, Berlin.

    Google Scholar 

  • FieldC. & MooneyH. A. 1986. The photosynthesis-nitrogen relationship in wild plants. In: GivinishT. J. (ed.) On the economy of plant form and function. pp. 25–56. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • FineganB. 1984. Forest succession. Nature 312: 109–114.

    Google Scholar 

  • FitterA. H. & HayR. K. M. 1981. Environmental physiology of plants. Academic Press, London.

    Google Scholar 

  • GatesC. T. 1968. Water deficits and growth of herbaceous plants. In: KozlowskiT. T. (ed), Water deficits and plant growth II. Plant water consumption and response. pp. 135–190. Academic Press, New York.

    Google Scholar 

  • GatesD. M. 1980. Biophysical ecology. Springer-Verlag, N.Y.

    Google Scholar 

  • GiffordR. M. & EvansL. T., 1981. Photosynthesis, carbon partitioning, and yield. Ann. Rev. Plant Physiol. 32: 485–509.

    Google Scholar 

  • GivnishT. J. 1978. On the adaptive significance of compound leaves, with particular reference to tropical trees. In: TomlinsonP. B. & ZimmermanM. H. (eds), Tropical trees as living systems. pp. 351–380. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • GivnishT. J. 1979. On the adaptive significance of leaf form. In: SolbrigO. T., JainS., JohnsonG. B. & RavenP. H. (eds), Topics in plant population biology. pp. 375–407. Columbia Univ. Press, New York.

    Google Scholar 

  • GivnishT. J. 1982. On the adaptive significance of leaf height in forest herbs. Am. Nat. 120: 353–381.

    Google Scholar 

  • GivnishT. J. 1986. On the economy of plant form and function. (ed.). Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • GreensladeP. J. M. 1983. Adversity selection and the habitat templet. Am. Nat. 122: 352–365.

    Google Scholar 

  • GrimeJ. P. 1974. Vegetation classification by reference to strategy. Nature 250: 26–31.

    Google Scholar 

  • GrimeJ. P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111: 1169–1194.

    Google Scholar 

  • GrimeJ. P. 1979. Plant strategies and vegetation processes. John Wiley, N.Y.

    Google Scholar 

  • GrimeJ. P. & JeffreyD. W. 1965. Seedling establishment in vertical gradients of sunlight. J. Ecol. 53: 621–642.

    Google Scholar 

  • HalléF. 1974. Architecture of trees in the rain forest of Morobe District, New Guinea. Biotropica 6: 43–50.

    Google Scholar 

  • HalléF. & OldemanR. A. A. 1975. Essay on the architecture and dynamics of growth of tropical tress. Penerbit University, Kuala Lumpur, Malaya.

    Google Scholar 

  • HanesT. L. 1971. Succession after fire in the chaparral of southern California. Ecol. Monogr. 41: 27–52.

    Google Scholar 

  • HartshornG. S. 1978. Tree falls and tropical forest dynamics. In: TomlinsonP. B. & ZimmermannM. H. (eds) Tropical trees as living systems. pp. 617–638. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Heady, E. O., Pesek, J. T. & Brown, W. G. 1955. Crop response surfaces and economic optima in fertilizer use. Iowa State College Bull. 424. Ames, Iowa.

  • HoldridgeL. R. 1967. Life zone ecology. Tropical Science Center, San Jose, Costa Rica.

    Google Scholar 

  • HuntR. & NichollsA. O. 1986. Stress and the coarse control of growth and root-shoot partitioning in herbaceous plants. Oikos 47: 149–158.

    Google Scholar 

  • HustonM. A. 1979. A general hypothesis of species diversity. Am. Nat. 113: 81–101.

    Google Scholar 

  • HustonM. A. 1985. Patterns of species diversity on coral reefs. Ann. Rev. Ecol. Syst. 16: 149–177.

    Google Scholar 

  • HustonM. A. & DeAngelisD. L. 1987. Size bimodality in monospecific populations: A critical review of potential mechanisms. Am. Nat. 129: 678–707.

    Google Scholar 

  • HustonM. A. & SmithT. M. 1987. Plant succession: Life history and competition. Am. Nat. 130: 168–198.

    Google Scholar 

  • HustonM. A., DeAngelisD. L. & PostW. M. 1988. New computer models unify ecological theory. BioScience 38: 682–691.

    Google Scholar 

  • KeeverC. 1950. Causes of succession on old fields of the Piedmont, North Carolina. Ecol. Monogr. 20: 229–250.

    Google Scholar 

  • KempW. M. & MitschW. J. 1979. Turbulence and phytoplankton diversity: a general model of the ‘paradox of plankton’. Ecol. Model. 7: 201–222.

    Google Scholar 

  • KochA. L. 1974. Coexistence resulting from alternation of density-independent and density-dependent growth. J. Theor. Biol. 44: 373–386.

    Google Scholar 

  • KozlowskiT. T. 1976. Water supply and leaf shedding. In: KozlowskiT. T. (ed.) Water deficits and plant growth IV. Soil water measurement, plant responses, and breeding for drought resistance. pp. 191–231. Academic Press, New York.

    Google Scholar 

  • KozowskiT. T. 1982. Water supply and tree growth. Part I. Water deficits. Commonwealth Forestry Abstracts 43: 57–95.

    Google Scholar 

  • KramerP. J. 1969. Plant and soil water relationships: a modern synthesis. McGraw-Hill, New York.

    Google Scholar 

  • KramerP. J. 1983. Water relations of plants. Academic Press, Inc., Orlando, Florida.

    Google Scholar 

  • KramerP. J. & KozlowskiT. T. 1979. Physiology of woody plants. Academic Press, New York.

    Google Scholar 

  • LarcherW. 1980. Physiological plant ecology. Springer-Verlag, Berlin.

    Google Scholar 

  • LeonJ. & TumpsonD. 1975. Competition between two species for two complementary or substitutible resources. J. Theor. Biol. 50: 185–201.

    Google Scholar 

  • LewontinR. C. & CohenD. 1969. On population growth in a randomly varying environment. Proc. Nat. Acad. Sci. (USA) 62: 1056–1060.

    Google Scholar 

  • LinderS., McDonaldJ. & LohammarT. 1981. Effects of nitrogen status and irradiance during cultivation on photosynthesis and respiration in birch seedlings. Energy Forest Project (EEP). Swed. Univ. Agric. Sci., Uppsala.

    Google Scholar 

  • LoachK. 1967. Shade tolerance in tree seedlings. I. Leaf photosynthesis and respiration in plants raised under artificial shade. New Phytol. 66: 607–621.

    Google Scholar 

  • LoachK. 1970. Shade tolerance in tree seedlings. II. Growth analysis of plants raised under artificial shade. New Phytol. 69: 273–286.

    Google Scholar 

  • MacArthurR. H. & WilsonE. O. 1967. The theory of island biogeography. Princeton Univ. Press, Princeton, New Jersey.

    Google Scholar 

  • McGreeK. J. 1986. Whole-plant carbon balance during osmotic adjustment to drought and salinity stress. Aust. J. Plant Physiol. 13: 33–43.

    Google Scholar 

  • McGrawJ. B. & WulffR. D. 1983. The study of plant growth: A link between the physiological ecology and population biology of plants. J. Theor. Biol. 103: 21–28.

    Google Scholar 

  • McMurtrieR. & WolfL. 1983. Above- and below-ground growth of forest stands: a carbon budget model. Ann. Bot. 52: 437–448.

    Google Scholar 

  • MedinaE. 1971. Effect of nitrogen supply and light intensity during growth on the photosynthetic capacity and carboxydismutase activity of leaves of Atriplex patula ssp. hastata. Carnegie Inst. Washington Yeab. 70: 551–559.

    Google Scholar 

  • MitchellH. L. & ChandlerR. F. 1939. The nitrogen nutrition and growth of certain deciduous trees of northeastern United States. Black Rock Forest Bull. 11: 1–91.

    Google Scholar 

  • MonsiN. 1968. Mathematical models of plant communities. In: EckardtF. (ed.), Functioning of terrestrial ecosystems at the primary production level. pp. 131–149. UNESCO, Paris.

    Google Scholar 

  • MonsiN. & MurataY. 1970. Development of photosynthetic systems as influenced by distribution of matter. In: Prediction and measurement of photosynthetic productivity. pp. 115–129. Cent. Agr. Publ. Doc. Wageningen, The Netherlands.

    Google Scholar 

  • MooneyH. A. 1972. The carbon balance of plants. Ann. Rev. of Ecol. and Syst. 3: 315–346.

    Google Scholar 

  • MooneyH. A. & GulmonS. L. 1979. Environmental and evolutionary constraints on the photosynthetic characteristics of higher plants. In: SolbrigO. T., JainS., JohnsonG. B. & RavenP. H. (eds) Topics in plant population biology. pp. 316–337. Columbia Univ. Press, New York.

    Google Scholar 

  • MooneyH. A. & GulmonS. L. 1982. Constraints on leaf structure and function in reference to herbivory. BioScience 32: 198–206.

    Google Scholar 

  • Mueller-DomboisD. & EllenbergH. 1974. Aims and methods of vegetation ecology. Wiley, New York.

    Google Scholar 

  • Mueller-DomboisD. & SimsH. P. 1966. Response of three grasses to two soils and water-table depth gradient. Ecology 47: 644–648.

    Google Scholar 

  • NobleI. R. & SlatyerR. O. 1980. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43: 5–21.

    Google Scholar 

  • Noy-MeirI. 1973. Desert ecosystems: environment and producers. Ann. Rev. Ecol. and Syst. 4: 25–51.

    Google Scholar 

  • NutmanF. J. 1937. Studies in the physiology of Coffea arabica L. Photosynthesis of coffee leaves under natural conditions. Ann. Bot. N.S. 1: 353–367.

    Google Scholar 

  • OostingH. J. 1942. An ecological analysis of the plant communities of Piedmont, North Carolina. Am. Midl. Nat. 28: 1–126.

    Google Scholar 

  • OostingH. J. & KramerP. J. 1946. Water and light in relation to pine reproduction. Ecology 27: 47–53.

    Google Scholar 

  • OriansG. H. & SolbrigO. T. 1977. A cost-income model of leaves and roots with special reference to arid and semiarid areas. Am. Nat. 111: 677–690.

    Google Scholar 

  • OsmondC. B., AustinM. P., BerryJ. A., BillingsW. D., BoyerJ. S., DaceyJ. W. H. NobelP. S., SmithS. D. & WinnerW. E. 1987. Stress physiology and the distribution of plants. BioScience 37: 38–48.

    Google Scholar 

  • OsonubiO. & DaviesJ. W. 1980. The influence of water stress on the photosynthetic performance and stomatal behavior of tree seedlings subjected to variation in temperature and irradiance. Oecologia 45: 3–10.

    Google Scholar 

  • ParkhurstD. G. & LoucksO. L. 1972. Optimal leaf size in relation to environment. J. Ecol. 60: 505–537.

    Google Scholar 

  • ParsonsR. F. 1968a. The significance of growth rate comparisons for plant ecology. Am. Nat. 102: 295–297.

    Google Scholar 

  • ParsonsR. F. 1968b Ecological aspects of growth and mineral nutrition of three mallee species of Eucalyptus. Oecol. Plant. 3: 121–136.

    Google Scholar 

  • PastorJ. & PostW. M. 1985. Development of linked forest productivity-soil process model. ORNL/TM-9519. Oak Ridge National Lab., Oak Ridge, TN.

    Google Scholar 

  • PastorJ. & PostW. M. 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochem. 2: 3–17.

    Google Scholar 

  • PastorJ. & PostW. M. 1988. Response of northern forests to CO2-induced climatic change: Dependence on soil water and nitrogen availabilities. Nature 334: 55–58.

    Google Scholar 

  • Paul, B. G. 1930. The applications of silviculture in controlling the specific gravity of wood. USDA Tech. Bull. 168.

  • PeetR. K. & LoucksO. L. 1977. A gradient analysis of southern Wisconsin forests. Ecology 58: 485–499.

    Google Scholar 

  • PinedaF. D., NicolasJ. P., RuizM., PecoB. & BernaldezF. G. 1981a. Succession, diversité et amplitude de niche dans les pâturages du centre de la peninsule Ibérique. Vegetatio 46/47: 267–277.

    Google Scholar 

  • PinedaF. D., NicolasJ. P., RuizM., PecoB. & BernaldezF. G. 1981b. Ecological succession in oligotrophic pastures of central Spain. Vegetatio 44: 165–176.

    Google Scholar 

  • RaunkiaerC. 1934. The life-forms of plants and statistical plant geography. Oxford Univ. Press, Oxford.

    Google Scholar 

  • RootR. B. 1967. The niche exploitation pattern of the bluegrey gnatcatcher. Ecol. Monogr. 37: 317–350.

    Google Scholar 

  • RorisonI. 1968. The response to phosphorus of some ecologically distinct plant species: I. Growth rates and phosphorus absorption. New Phytol. 67: 913–923.

    Google Scholar 

  • RunkleJ. R. 1981. Gap regeneration in some old-growth forests of the eastern United States. Ecol. 62: 1041–1051.

    Google Scholar 

  • RunkleJ. R. 1982. Patterns of disturbance in some old-growth mesic forests of eastern North America. Ecol. 63: 1533–1546.

    Google Scholar 

  • RunkleJ. R. & YetterT. C. 1987. Treefalls revisited: gap dynamics in the southern Appalachians. Ecol. 68: 417–424.

    Google Scholar 

  • SalisburyE. J. 1929. The biological equipment of species in relation to competition. J. Ecol. 17: 197–222.

    Google Scholar 

  • ShelfordV. E. 1951a. Fluctuation of non-forest animal populations in the upper Mississippi Basin. Ecol. Monogr. 21: 149–181.

    Google Scholar 

  • ShelfordV. E. 1951b. Fluctuation of forest animal populations in east central Illinois. Ecol. Monogr. 21: 183–214.

    Google Scholar 

  • SchulzeE. D. 1982. Plant life forms and their carbon, water, and nutrient relations. In: LangeO. L., NobelP. S., OsmondC. B. & ZieglerH. Water relations and carbon assimilation. pp. 616–676. Springer-Verlag, Berlin.

    Google Scholar 

  • SchulzeE. D. 1986. Whole-plant responses to drought. Aust. J. Plant Physiol. 13: 127–141.

    Google Scholar 

  • SchulzeE. D., RobichauxR. H., GraceJ., RundelP. W. & EhleringerJ. R. 1987. Plant water balance. BioScience 37: 30–37.

    Google Scholar 

  • ShugartH. H. 1984. A theory of forest dynamics. Springer-Verlag, N.Y.

    Google Scholar 

  • ShugartH. H. & WestD. C. 1977. Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the Chestnut blight. J. Environm. Manage. 5: 161–179.

    Google Scholar 

  • ShugartH. H. & WestD. C. 1979. Size and pattern of simulated forest stands. For. Sci. 25: 120–122.

    Google Scholar 

  • SmithT. M. & GoodmanP. S. 1986. The role of competition on the structure and dynamics of Acacia savannas in southern Africa. J. Ecol. 74: 1031–1044.

    Google Scholar 

  • SmithT. M. & GoodmanP. S. 1987. Successional dynamics in a semi-arid savannah: Spatial and temporal relationship between Acacia nilotica and Euclea divinorum. J. Ecol. 75: 603–610.

    Google Scholar 

  • SouthwoodT. R. E. 1977. Habitat, the templet for ecological strategies. J. Anim. Ecol. 46: 337–365.

    Google Scholar 

  • StruikG. J. & BrayJ. R. 1970. Root-shoot ratios of native forest herbs and Zea mays at different soil moisture levels. Ecol. 51: 892–893.

    Google Scholar 

  • SwaineM. D. & WhitmoreT. C. 1988. On the definition of ecological species groups in tropical rain forests. Vegetatio 75: 81–86.

    Google Scholar 

  • TeskeyR. O. & ShresthaR. R. 1985. A relationship between carbon dioxide, photosynthetic efficiency, and shade tolerance. Physiol. Plant. 63: 126–132.

    Google Scholar 

  • TilmanD. 1980. Resources: a graphical-mechanistic approach to competition and predation. Am. Nat. 116: 362–393.

    Google Scholar 

  • TilmanD. 1982. Resource competition and community structure. Princeton Univ. Press, Princeton.

    Google Scholar 

  • TilmanD. 1987. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol. Monogr. 57: 189–214.

    Google Scholar 

  • TilmanD. 1988. Plant strategies and the dynamics and structure of plant communities. Princeton Univ. Press, Princeton.

    Google Scholar 

  • TolleyL. C. & StrainB. R. 1984. Effects of CO2 enrichment of growth of Liquidambar styraciflua and Pinus taeda seedlings under different irradiance levels. Can. J. For. Res. 14: 343–350.

    Google Scholar 

  • TolleyL. C. & StrainB. R. 1985. Effects of CO2 enrichment and water stress on gas exchange of Liquidambar styraciflua and Pinus taeda seedlings grown under different irradiance levels. Oecologia 65: 166–172.

    Google Scholar 

  • TurnerN. C. 1986. Adaptation to water deficits: a changing perspective. Aust. J. Plant Physiol. 13: 175–190.

    Google Scholar 

  • WalkerB. H., LudwigD., HollingC. S. & PetermanR. M. 1981. Stability of semi-arid savanna grazing systems. J. Ecol. 69: 473–498.

    Google Scholar 

  • WalterH. 1964. Die Vegetation der Erde. I. Die tropischen und subtropischen Zonen. Fisher-Verlag, Jena.

    Google Scholar 

  • WalterH. 1968. Die Vegetation der Erde in Okophysiologischer Betrachtung, Vol. 2. Die gemässigten und arktischen Zonen. Fischer, Jena.

    Google Scholar 

  • WalterH. 1971. Ecology of tropical and subtropical vegetation. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • WalterH. 1973. Vegetation of the earth in relation to the ecophysiological conditions. Springer-Verlag., N.Y.

    Google Scholar 

  • WebbL. J., TraceyJ. G. WilliamsW. T. & LanceG. N. 1970. Studies in the numerical analysis of complex rainforest communities. V. A. comparison of the properties of floristic and physiognomic-structural data. J. Ecol. 58: 203–232.

    Google Scholar 

  • WeisserP. J. & MarquesF. 1979. Gross vegetation changes in the dune areas between Richards Bay and Mfolozi River. Bothalia 12: 711–721.

    Google Scholar 

  • WernerP. A. & PlattW. J. 1976. Ecological relationships of co-occurring goldenrods (Solidago: Compositae). Am. Nat. 110: 959–971.

    Google Scholar 

  • WestD. C., ShugartH. H. & BotkinD. B. 1981. Forest succession concepts and applications (eds) Springer-Verlag, New York.

    Google Scholar 

  • WhiteF. 1968. Zambia. Acta Phytogeogr. Suecica 54: 208–215.

    Google Scholar 

  • WhittakerR. H. 1956. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1–80.

    Google Scholar 

  • WhittakerR. H. 1975. Communities and ecosystems. MacMillan, N.Y.

    Google Scholar 

  • WithersJ. R. 1979. Studies on the status of unburnt Eucalyptus woodland at Ocean-Grove Victoria. IV. Effects of shading on seedling establishment. Aust. J. Bot. 27: 47–66.

    Google Scholar 

  • ZahnerR. 1970. Site quality and wood quality in upland hardwoods: theoretical considerations of wood density. In: YoungbergC. T. & DaveyC. B. (eds), Tree growth and forest soils. pp. 406–424. Oregon State Univ. Press, Corvallis, Oregon.

    Google Scholar 

  • ZedlerP. H. 1981. Vegetation change in chaparral and desert communities in San Diego County, California. In: WestD. C., ShugartH. H. & BotkinD. B. (eds), Forest succession. pp. 406–424. Springer-Verlag, N.Y.

    Google Scholar 

  • ZimmermanM. H. & BrownC. L. 1971. Trees, structure, and function. Springer-Verlag, N.Y.

    Google Scholar 

  • ZimmermannM. H. & MilburnJ. A. 1982. Transport and storage of water. In: LangeO. L., NobelP. S., OsmondC. B. & ZieglerH. (eds), Physiological plant ecology II. Water relations and carbon assimilation. pp. 135–151. Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, T., Huston, M. A theory of the spatial and temporal dynamics of plant communities. Vegetatio 83, 49–69 (1989). https://doi.org/10.1007/BF00031680

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00031680

Keywords

Navigation