Skip to main content
Log in

Concurrent use of continuous kidney replacement therapy during extracorporeal membrane oxygenation: what pediatric nephrologists need to know—PCRRT-ICONIC practice points

  • Consensus Conference
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Extracorporeal membrane oxygenation (ECMO) provides temporary cardiorespiratory support for neonatal, pediatric, and adult patients when traditional management has failed. This lifesaving therapy has intrinsic risks, including the development of a robust inflammatory response, acute kidney injury (AKI), fluid overload (FO), and blood loss via consumption and coagulopathy. Continuous kidney replacement therapy (CKRT) has been proposed to reduce these side effects by mitigating the host inflammatory response and controlling FO, improving outcomes in patients requiring ECMO. The Pediatric Continuous Renal Replacement Therapy (PCRRT) Workgroup and the International Collaboration of Nephrologists and Intensivists for Critical Care Children (ICONIC) met to highlight current practice standards for ECMO use within the pediatric population. This review discusses ECMO modalities, the pathophysiology of inflammation during an ECMO run, its adverse effects, various anticoagulation strategies, and the technical aspects and outcomes of implementing CKRT during ECMO in neonatal and pediatric populations. Consensus practice points and guidelines are summarized. ECMO should be utilized in patients with severe acute respiratory failure despite the use of conventional treatment modalities. The Extracorporeal Life Support Organization (ELSO) offers guidelines for ECMO initiation and management while maintaining a clinical registry of over 195,000 patients to assess outcomes and complications. Monitoring and preventing fluid overload during ECMO and CKRT are imperative to reduce mortality risk. Clinical evidence, resources, and experience of the nephrologist and healthcare team should guide the selection of ECMO circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mallory PP, Selewski DT, Askenazi DJ, Cooper DS, Fleming GM, Paden ML et al (2020) Acute kidney injury, fluid overload, and outcomes in children supported with extracorporeal membrane oxygenation for a respiratory indication. ASAIO J 66:319–326. https://doi.org/10.1097/MAT.0000000000001000

    Article  PubMed  Google Scholar 

  2. Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF (2016) The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology. Crit Care 20:387. https://doi.org/10.1186/s13054-016-1570-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Michel CC (1996) Transport of macromolecules through microvascular walls. Cardiovasc Res 32:644–653

    Article  CAS  PubMed  Google Scholar 

  4. Thongprayoon C, Cheungpasitporn W, Lertjitbanjong P, Aeddula NR, Bathini T, Watthanasuntorn K et al (2019) Incidence and impact of acute kidney injury in patients receiving extracorporeal membrane oxygenation: a meta-analysis. J Clin Med 8:981. https://doi.org/10.3390/jcm8070981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ostermann M, Lumlertgul N (2021) Acute kidney injury in ECMO patients. Crit Care 25:313. https://doi.org/10.1186/s13054-021-03676-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Selewski DT, Askenazi DJ, Bridges BC, Cooper DS, Fleming GM, Paden ML et al (2017) The impact of fluid overload on outcomes in children treated with extracorporeal membrane oxygenation: a multicenter retrospective cohort study*. Pediatr Crit Care Med 18:1126–1135. https://doi.org/10.1097/PCC.0000000000001349

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rao P, Khalpey Z, Smith R, Burkhoff D, Kociol RD (2018) Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest. Circ Heart Fail 11:e004905. https://doi.org/10.1161/CIRCHEARTFAILURE.118.004905

    Article  PubMed  Google Scholar 

  8. Makdisi G, Wang I-W (2015) Extra corporeal membrane oxygenation (ECMO) review of a lifesaving technology. J Thorac Dis 7:E166-176. https://doi.org/10.3978/j.issn.2072-1439.2015.07.17

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lindfors M, Frenckner B, Sartipy U, Bjällmark A, Broomé M (2017) Venous cannula positioning in arterial deoxygenation during veno-arterial extracorporeal membrane oxygenation-a simulation study and case report. Artif Organs 41:75–81. https://doi.org/10.1111/aor.12700

    Article  PubMed  Google Scholar 

  10. Hou X, Yang X, Du Z, Xing J, Li H, Jiang C et al (2015) Superior vena cava drainage improves upper body oxygenation during veno-arterial extracorporeal membrane oxygenation in sheep. Crit Care 19:68. https://doi.org/10.1186/s13054-015-0791-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Falk L, Sallisalmi M, Lindholm JA, Lindfors M, Frenckner B, Broomé M et al (2019) Differential hypoxemia during venoarterial extracorporeal membrane oxygenation. Perfusion 34:22–29. https://doi.org/10.1177/0267659119830513

    Article  PubMed  Google Scholar 

  12. Madershahian N, Nagib R, Wippermann J, Strauch J, Wahlers T (2006) A simple technique of distal limb perfusion during prolonged femoro-femoral cannulation. J Card Surg 21:168–169. https://doi.org/10.1111/j.1540-8191.2006.00201.x

    Article  PubMed  Google Scholar 

  13. Biscotti M, Bacchetta M (2014) The “sport model”: extracorporeal membrane oxygenation using the subclavian artery. Ann Thorac Surg 98:1487–1489. https://doi.org/10.1016/j.athoracsur.2014.02.069

    Article  PubMed  Google Scholar 

  14. Su Y, Liu K, Zheng J-L, Li X, Zhu D-M, Zhang Y et al (2020) Hemodynamic monitoring in patients with venoarterial extracorporeal membrane oxygenation. Ann Transl Med 8:792. https://doi.org/10.21037/atm.2020.03.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Appelt H, Philipp A, Mueller T, Foltan M, Lubnow M, Lunz D et al (2020) Factors associated with hemolysis during extracorporeal membrane oxygenation (ECMO)-comparison of VA- versus VV ECMO. PLoS One 15:e0227793. https://doi.org/10.1371/journal.pone.0227793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Halloran CP, Thiagarajan RR, Yarlagadda VV, Barbaro RP, Nasr VG, Rycus P et al (2019) Outcomes of infants supported with extracorporeal membrane oxygenation using centrifugal versus roller pumps: an analysis from the ELSO Registry. Pediatr Crit Care Med 20:1177–1184. https://doi.org/10.1097/PCC.0000000000002103

    Article  PubMed  PubMed Central  Google Scholar 

  17. Munshi L, Walkey A, Goligher E, Pham T, Uleryk EM, Fan E (2019) Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med 7:163–172. https://doi.org/10.1016/S2213-2600(18)30452-1

    Article  PubMed  Google Scholar 

  18. Maslach-Hubbard A, Bratton SL (2013) Extracorporeal membrane oxygenation for pediatric respiratory failure: history, development and current status. World J Crit Care Med 2:29–39. https://doi.org/10.5492/wjccm.v2.i4.29

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brasseur A, Scolletta S, Lorusso R, Taccone FS (2018) Hybrid extracorporeal membrane oxygenation. J Thorac Dis 10:S707-715. https://doi.org/10.21037/jtd.2018.03.84

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cui Y, Zhang Y, Dou J, Shi J, Zhao Z, Zhang Z et al (2022) Venovenous vs. venoarterial extracorporeal membrane oxygenation in infection-associated severe pediatric acute respiratory distress syndrome: a prospective multicenter cohort study. Front Pediatr 10:832776. https://doi.org/10.3389/fped.2022.832776

    Article  PubMed  PubMed Central  Google Scholar 

  21. Graulich J, Sonntag J, Marcinkowski M, Bauer K, Kössel H, Bührer C et al (2002) Complement activation by in vivo neonatal and in vitro extracorporeal membrane oxygenation. Mediators Inflamm 11:69–73. https://doi.org/10.1080/09629350220131908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mu TS, Palmer EG, Batts SG, Lentz-Kapua SL, Uyehara-Lock JH, Uyehara CFT (2012) Continuous renal replacement therapy to reduce inflammation in a piglet hemorrhage-reperfusion extracorporeal membrane oxygenation model. Pediatr Res 72:249–255. https://doi.org/10.1038/pr.2012.69

    Article  CAS  PubMed  Google Scholar 

  23. Fleming GM, Sahay R, Zappitelli M, King E, Askenazi DJ, Bridges BC et al (2016) The incidence of acute kidney injury and its effect on neonatal and pediatric extracorporeal membrane oxygenation outcomes: a multicenter report from the Kidney Intervention During Extracorporeal Membrane Oxygenation Study Group. Pediatr Crit Care Med 17:1157–1169. https://doi.org/10.1097/PCC.0000000000000970

    Article  PubMed  PubMed Central  Google Scholar 

  24. Selewski DT, Wille KM (2021) Continuous renal replacement therapy in patients treated with extracorporeal membrane oxygenation. Semin Dial 34:537–549. https://doi.org/10.1111/sdi.12965

    Article  PubMed  PubMed Central  Google Scholar 

  25. Raina R, Nair N, Chakraborty R, Nemer L, Dasgupta R, Varian K (2020) An update on the pathophysiology and treatment of cardiorenal syndrome. Cardiol Res 11:76–88. https://doi.org/10.14740/cr955

    Article  PubMed  PubMed Central  Google Scholar 

  26. Szabó-Biczók A, Varga G, Varga Z, Bari G, Vigyikán G, Gajda Á et al (2022) Veno-venous extracorporeal membrane oxygenation in minipigs as a robust tool to model acute kidney injury: technical notes and characteristics. Front Med 9:866667. https://doi.org/10.3389/fmed.2022.866667

    Article  Google Scholar 

  27. Villa G, Katz N, Ronco C (2015) Extracorporeal membrane oxygenation and the kidney. Cardiorenal Med 6:50–60. https://doi.org/10.1159/000439444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karakala N, Juncos LA (2020) Providing continuous renal replacement therapy in patients on extracorporeal membrane oxygenation. Clin J Am Soc Nephrol 15:704–706. https://doi.org/10.2215/CJN.11220919

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee SW, Yu M-Y, Lee H, Ahn SY, Kim S, Chin HJ et al (2015) Risk factors for acute kidney injury and in-hospital mortality in patients receiving extracorporeal membrane oxygenation. PLoS One 10:e0140674. https://doi.org/10.1371/journal.pone.0140674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shahzad M (2021) Critical care pediatric nephrology and dialysis: a practical handbook. J Pediatr Crit Care 8:58. https://doi.org/10.4103/JPCC.JPCC_142_20

    Article  Google Scholar 

  31. Kim H, Paek JH, Song JH, Lee H, Jhee JH, Park S et al (2018) Permissive fluid volume in adult patients undergoing extracorporeal membrane oxygenation treatment. Crit Care 22:270. https://doi.org/10.1186/s13054-018-2211-x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Askenazi DJ, Selewski DT, Paden ML, Cooper DS, Bridges BC, Zappitelli M et al (2012) Renal replacement therapy in critically ill patients receiving extracorporeal membrane oxygenation. Clin J Am Soc Nephrol 7:1328–1336. https://doi.org/10.2215/CJN.12731211

    Article  PubMed  Google Scholar 

  33. Jeon J, Kim DH, Baeg SI, Lee EJ, Chung CR, Jeon K et al (2018) Association between diuretics and successful discontinuation of continuous renal replacement therapy in critically ill patients with acute kidney injury. Crit Care 22:255. https://doi.org/10.1186/s13054-018-2192-9

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kumar G, Maskey A (2021) Anticoagulation in ECMO patients: an overview. Indian J Thorac Cardiovasc Surg 37:241–247. https://doi.org/10.1007/s12055-021-01176-3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Al-Jazairi A, Raslan S, Al-Mehizia R, Dalaty HA, De Vol EB, Saad E et al (2021) Performance assessment of a multifaceted unfractionated heparin dosing protocol in adult patients on extracorporeal membrane oxygenator. Ann Pharmacother 55:592–604. https://doi.org/10.1177/1060028020960409

    Article  CAS  PubMed  Google Scholar 

  36. Ryerson LM, Lequier LL (2016) Anticoagulation management and monitoring during pediatric extracorporeal life support: a review of current issues. Front Pediatr 4:67. https://doi.org/10.3389/fped.2016.00067

    Article  PubMed  PubMed Central  Google Scholar 

  37. Burstein B, Wieruszewski PM, Zhao Y-J, Smischney N (2019) Anticoagulation with direct thrombin inhibitors during extracorporeal membrane oxygenation. World J Crit Care Med 8:87–98. https://doi.org/10.5492/wjccm.v8.i6.87

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tsu LV, Dager WE (2011) Bivalirudin dosing adjustments for reduced renal function with or without hemodialysis in the management of heparin-induced thrombocytopenia. Ann Pharmacother 45:1185–1192. https://doi.org/10.1345/aph.1Q177

    Article  CAS  PubMed  Google Scholar 

  39. Penk JS, Reddy S, Polito A, Cisco MJ, Allan CK, Bembea MM et al (2019) Bleeding and thrombosis with pediatric extracorporeal life support: a roadmap for management, research, and the future from the pediatric cardiac intensive care society: part 1. Pediatr Crit Care Med 20:1027–1033. https://doi.org/10.1097/PCC.0000000000002054

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nalesso F, Bettin E, Bogo M, Cacciapuoti M, Cattarin L, Scaparrotta G, Calò LA (2023) Safety of citrate anticoagulation in CKRT: monocentric experience of a dynamic protocol of calcium monitoring. J Clin Med 12:5201. https://doi.org/10.3390/jcm12165201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu SY, Xu SY, Yin L, Yang T, Jin K, Zhang QB, Sun F, Tan DY, Xin TY, Chen YG, Zhao XD, Yu XZ, Xu J (2023) Emergency Medical Doctor Branch of the Chinese Medical Doctor Association. Management of regional citrate anticoagulation for continuous renal replacement therapy: guideline recommendations from Chinese emergency medical doctor consensus. Mil Med Res 10:23. https://doi.org/10.1186/s40779-023-00457-9

    Article  PubMed  PubMed Central  Google Scholar 

  42. Toulon P (2016) Developmental hemostasis: laboratory and clinical implications. Int J Lab Hematol 38(Suppl 1):66–77. https://doi.org/10.1111/ijlh.12531

    Article  PubMed  Google Scholar 

  43. Cashen K, Meert K, Dalton H (2019) Anticoagulation in neonatal ECMO: an enigma despite a lot of effort! Front Pediatr 7:366. https://doi.org/10.3389/fped.2019.00366

    Article  PubMed  PubMed Central  Google Scholar 

  44. McMaster P, Shann F (2003) The use of extracorporeal techniques to remove humoral factors in sepsis. Pediatr Crit Care Med 4:2–7. https://doi.org/10.1097/00130478-200301000-00002

    Article  PubMed  Google Scholar 

  45. Nguyen TC, Han YY, Kiss JE, Hall MW, Hassett AC, Jaffe R et al (2008) Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated multiple organ failure. Crit Care Med 36:2878–2887. https://doi.org/10.1097/ccm.0b013e318186aa49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chong M, Lopez-Magallon AJ, Saenz L, Sharma MS, Althouse AD, Morell VO et al (2017) Use of therapeutic plasma exchange during extracorporeal life support in critically ill cardiac children with thrombocytopenia-associated multi-organ failure. Front Pediatr 5:254. https://doi.org/10.3389/fped.2017.00254

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nguyen TC, Carcillo JA (2006) Bench-to-bedside review: thrombocytopenia-associated multiple organ failure–a newly appreciated syndrome in the critically ill. Crit Care 10:235. https://doi.org/10.1186/cc5064

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nguyen TC, Han YY (2011) Plasma exchange therapy for thrombotic microangiopathies. Organogenesis 7:28–31. https://doi.org/10.4161/org.7.1.14027

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kawai Y, Cornell TT, Cooley EG, Beckman CN, Baldridge PK, Mottes TA et al (2015) Therapeutic plasma exchange may improve hemodynamics and organ failure among children with sepsis-induced multiple organ dysfunction syndrome receiving extracorporeal life support. Pediatr Crit Care Med 16:366–374. https://doi.org/10.1097/PCC.0000000000000351

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rimmer E, Houston BL, Kumar A, Abou-Setta AM, Friesen C, Marshall JC et al (2014) The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care 18:699. https://doi.org/10.1186/s13054-014-0699-2

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dyer M, Neal MD, Rollins-Raval MA, Raval JS (2014) Simultaneous extracorporeal membrane oxygenation and therapeutic plasma exchange procedures are tolerable in both pediatric and adult patients. Transfusion (Paris) 54:1158–1165. https://doi.org/10.1111/trf.12418

    Article  CAS  Google Scholar 

  52. Palevsky PM (2013) Renal replacement therapy in acute kidney injury. Adv Chronic Kidney Dis 20:76–84. https://doi.org/10.1053/j.ackd.2012.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  53. Murphy HJ, Cahill JB, Twombley KE, Annibale DJ, Kiger JR (2018) Implementing a practice change: early initiation of continuous renal replacement therapy during neonatal extracorporeal life support standardizes care and improves short-term outcomes. J Artif Organs 21:76–85. https://doi.org/10.1007/s10047-017-1000-7

    Article  PubMed  Google Scholar 

  54. Gorga SM, Sahay RD, Askenazi DJ, Bridges BC, Cooper DS, Paden ML et al (2020) Fluid overload and fluid removal in pediatric patients on extracorporeal membrane oxygenation requiring continuous renal replacement therapy: a multicenter retrospective cohort study. Pediatr Nephrol 35:871–882. https://doi.org/10.1007/s00467-019-04468-4

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhou YP, Shi JY, Wang F, Cui Y, Xu TT, Wang CX et al (2018) Continuous renal replacement therapy combined with extracorporeal membrane oxygenation for pediatric cardiopulmonary failure. Zhonghua Er Ke Za Zhi 56:336–341. https://doi.org/10.3760/cma.j.issn.0578-1310.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  56. Lou S, MacLaren G, Paul E, Best D, Delzoppo C, Butt W (2015) Hemofiltration is not associated with increased mortality in children receiving extracorporeal membrane oxygenation. Pediatr Crit Care Med 16:161–166. https://doi.org/10.1097/PCC.0000000000000290

    Article  PubMed  Google Scholar 

  57. Wolf MJ, Chanani NK, Heard ML, Kanter KR, Mahle WT (2013) Early renal replacement therapy during pediatric cardiac extracorporeal support increases mortality. Ann Thorac Surg 96:917–922. https://doi.org/10.1016/j.athoracsur.2013.05.056

    Article  PubMed  Google Scholar 

  58. Paden ML, Warshaw BL, Heard ML, Fortenberry JD (2011) Recovery of renal function and survival after continuous renal replacement therapy during extracorporeal membrane oxygenation. Pediatr Crit Care Med 12:153–158. https://doi.org/10.1097/PCC.0b013e3181e2a596

    Article  PubMed  PubMed Central  Google Scholar 

  59. Blijdorp K, Cransberg K, Wildschut ED, Gischler SJ, Jan Houmes R, Wolff ED et al (2009) Haemofiltration in newborns treated with extracorporeal membrane oxygenation: a case-comparison study. Crit Care 13:R48. https://doi.org/10.1186/cc7771

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hoover NG, Heard M, Reid C, Wagoner S, Rogers K, Foland J et al (2008) Enhanced fluid management with continuous venovenous hemofiltration in pediatric respiratory failure patients receiving extracorporeal membrane oxygenation support. Intensive Care Med 34:2241–2247. https://doi.org/10.1007/s00134-008-1200-y

    Article  PubMed  Google Scholar 

  61. Betrus C, Remenapp R, Charpie J, Kudelka T, Brophy P, Smoyer WE et al (2007) Enhanced hemolysis in pediatric patients requiring extracorporeal membrane oxygenation and continuous renal replacement therapy. Ann Thorac Cardiovasc Surg 13:378–383

    PubMed  Google Scholar 

  62. Cavagnaro F, Kattan J, Godoy L, Gonzáles A, Vogel A, Rodríguez JI et al (2007) Continuous renal replacement therapy in neonates and young infants during extracorporeal membrane oxygenation. Int J Artif Organs 30:220–226. https://doi.org/10.1177/039139880703000307

    Article  CAS  PubMed  Google Scholar 

  63. Sidebotham D, McGeorge A, McGuinness S, Edwards M, Willcox T, Beca J (2010) Extracorporeal membrane oxygenation for treating severe cardiac and respiratory failure in adults: part 2-technical considerations. J Cardiothorac Vasc Anesth 24:164–172. https://doi.org/10.1053/j.jvca.2009.08.002

    Article  PubMed  Google Scholar 

  64. Thompson AF, Luan J, Al Aklabi MM, Cave DA, Ryerson LM, Noga ML (2018) Pediatric extracorporeal membrane oxygenation (ECMO): a guide for radiologists. Pediatr Radiol 48:1488–1502. https://doi.org/10.1007/s00247-018-4211-z

    Article  PubMed  Google Scholar 

  65. Stegmayr B, Abdel-Rahman EM, Balogun RA (2012) Septic shock with multiorgan failure: from conventional apheresis to adsorption therapies. Semin Dial 25:171–175. https://doi.org/10.1111/j.1525-139X.2011.01029.x

    Article  PubMed  Google Scholar 

  66. Totapally A, Bridges BC, Selewski DT, Zivick EE (2023) Managing the kidney – the role of continuous renal replacement therapy in neonatal and pediatric ECMO. Semin Pediatr Surg 32:151332. https://doi.org/10.1016/j.sempedsurg.2023.151332

    Article  PubMed  Google Scholar 

  67. Zeidman AD (2021) Extracorporeal membrane oxygenation and continuous kidney replacement therapy: technology and outcomes - a narrative review. Adv Chronic Kidney Dis 28:29–36. https://doi.org/10.1053/j.ackd.2021.04.004

    Article  PubMed  Google Scholar 

  68. Shah A, Dave S, Goerlich CE, Kaczorowski DJ (2021) Hybrid and parallel extracorporeal membrane oxygenation circuits. JTCVS Tech 8:77–85. https://doi.org/10.1016/j.xjtc.2021.02.024

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ricci Z, Morelli S, Favia I, Garisto C, Brancaccio G, Picardo S (2012) Neutrophil gelatinase-associated lipocalin levels during extracorporeal membrane oxygenation in critically ill children with congenital heart disease: preliminary experience. Pediatr Crit Care Med 13:e51-54. https://doi.org/10.1097/PCC.0b013e3181fe4717

    Article  PubMed  Google Scholar 

  70. Gbadegesin R, Zhao S, Charpie J, Brophy PD, Smoyer WE, Lin J-J (2009) Significance of hemolysis on extracorporeal life support after cardiac surgery in children. Pediatr Nephrol 24:589–595. https://doi.org/10.1007/s00467-008-1047-z

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupesh Raina.

Ethics declarations

Conflict of interest

Matthew L. Paden discloses that he is the current past President of the Extracorporeal Life Support Organization, and that he has multiple patents and intellectual property for pediatric CKRT devices. All the patents and intellectual property are currently owned by Emory university/Georgia Institute of Technology/Children’s Healthcare of Atlanta and are not licensed. All other authors have no conflicts of interest to disclose or relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raina, R., Nair, N., Pelletier, J. et al. Concurrent use of continuous kidney replacement therapy during extracorporeal membrane oxygenation: what pediatric nephrologists need to know—PCRRT-ICONIC practice points. Pediatr Nephrol (2024). https://doi.org/10.1007/s00467-024-06311-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00467-024-06311-x

Keywords

Navigation