Skip to main content
Log in

Head-to-toe bedside ultrasound for adult patients on extracorporeal membrane oxygenation

  • Narrative Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Bedside ultrasound represents a well-suited diagnostic and monitoring tool for patients on extracorporeal membrane oxygenation (ECMO) who may be too unstable for transport to other hospital areas for diagnostic tests. The role of ultrasound, however, starts even before ECMO initiation. Every patient considered for ECMO should have a thorough ultrasonographic assessment of cardiac and valvular function, as well as vascular anatomy without delaying ECMO cannulation. The role of pre-ECMO ultrasound is to confirm the indication for ECMO, identify clinical situations for which ECMO is not indicated, rule out contraindications, and inform the choice of ECMO configuration. During ECMO cannulation, the use of vascular and cardiac ultrasound reduces the risk of complications and ensures adequate cannula positioning. Ultrasound remains key for monitoring during ECMO support and troubleshooting ECMO complications. For instance, ultrasound is helpful in the assessment of drainage insufficiency, hemodynamic instability, biventricular function, persistent hypoxemia, and recirculation on venovenous (VV) ECMO. Lung ultrasound can be used to monitor signs of recovery on VV ECMO. Brain ultrasound provides valuable diagnostic and prognostic information on ECMO. Echocardiography is essential in the assessment of readiness for liberation from venoarterial (VA) ECMO. Lastly, post decannulation ultrasound mainly aims at identifying post decannulation thrombosis and vascular complications. This review will cover the role of head-to-toe ultrasound for the management of adult ECMO patients from decision to initiate ECMO to the post decannulation phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Grasselli G, Calfee CS, Camporota L, Poole D, Amato MBP, Antonelli M, Arabi YM, Baroncelli F, Beitler JR, Bellani G, Bellingan G, Blackwood B, Bos LDJ, Brochard L, Brodie D, Burns KEA, Combes A, D’Arrigo S, De Backer D, Demoule A, Einav S, Fan E, Ferguson ND, Frat JP, Gattinoni L, Guerin C, Herridge MS, Hodgson C, Hough CL, Jaber S, Juffermans NP, Karagiannidis C, Kesecioglu J, Kwizera A, Laffey JG, Mancebo J, Matthay MA, McAuley DF, Mercat A, Meyer NJ, Moss M, Munshi L, Myatra SN, Ng Gong M, Papazian L, Patel BK, Pellegrini M, Perner A, Pesenti A, Piquilloud L, Qiu H, Ranieri MV, Riviello E, Slutsky AS, Stapleton RD, Summers C, Thompson TB, Valente Barbas CS, Villar J, Ware LB, Weiss B, Zampieri FG, Azoulay E, Cecconi M, European Society of Intensive Care Medicine Taskforce on A (2023) ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive Care Med 49:727–759

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lorusso R, Shekar K, MacLaren G, Schmidt M, Pellegrino V, Meyns B, Haft J, Vercaemst L, Pappalardo F, Bermudez C, Belohlavek J, Hou X, Boeken U, Castillo R, Donker DW, Abrams D, Ranucci M, Hryniewicz K, Chavez I, Chen YS, Salazar L, Whitman G (2021) ELSO Interim guidelines for venoarterial extracorporeal membrane oxygenation in adult cardiac patients. ASAIO J 67:827–844

    Article  PubMed  Google Scholar 

  3. Teijeiro-Paradis R, Gannon WD, Fan E (2022) Complications associated with venovenous extracorporeal membrane oxygenation-what can go wrong? Crit Care Med 50:1809–1818

    Article  PubMed  Google Scholar 

  4. Mayo PH, Chew M, Douflé G, Mekontso-Dessap A, Narasimhan M, Vieillard-Baron A (2022) Machines that save lives in the intensive care unit: the ultrasonography machine. Intensive Care Med 48:1429–1438

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tonna JE, Abrams D, Brodie D, Greenwood JC, Rubio Mateo-Sidron JA, Usman A, Fan E (2021) Management of adult patients supported with venovenous extracorporeal membrane oxygenation (VV ECMO): guideline from the Extracorporeal Life Support Organization (ELSO). ASAIO J 67:601–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fletcher-Sandersjoo A, Thelin EP, Bartek J Jr, Elmi-Terander A, Broman M, Bellander BM (2017) Management of intracranial hemorrhage in adult patients on extracorporeal membrane oxygenation (ECMO): an observational cohort study. PLoS ONE 12:e0190365

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hussey PT, von Mering G, Nanda NC, Ahmed MI, Addis DR (2022) Echocardiography for extracorporeal membrane oxygenation. Echocardiography 39:339–370

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hockstein MA, Singam NS, Papolos AI, Kenigsberg BB (2023) The role of echocardiography in extracorporeal membrane oxygenation. Curr Cardiol Rep 25:9–16

    Article  PubMed  Google Scholar 

  9. Combes A, Schmidt M, Hodgson CL, Fan E, Ferguson ND, Fraser JF, Jaber S, Pesenti A, Ranieri M, Rowan K, Shekar K, Slutsky AS, Brodie D (2020) Extracorporeal life support for adults with acute respiratory distress syndrome. Intensive Care Med 46:2464–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Combes A, Price S, Slutsky AS, Brodie D (2020) Temporary circulatory support for cardiogenic shock. Lancet 396:199–212

    Article  PubMed  Google Scholar 

  11. Abrams D, Combes A, Brodie D (2014) Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. J Am Coll Cardiol 63:2769–2778

    Article  PubMed  Google Scholar 

  12. Conrad SA, Broman LM, Taccone FS, Lorusso R, Malfertheiner MV, Pappalardo F, Nardo MD, Belliato M, Grazioli L, Barbaro RP, McMullan DM, Pellegrino V, Brodie D, Bembea MM, Fan E, Mendonca M, Diaz R, Bartlett RH (2018) The extracorporeal life support organization Maastricht treaty for nomenclature in extracorporeal life support. a position paper of the extracorporeal life support organization. Am J Respir Crit Care Med 198:447–451

    Article  PubMed  PubMed Central  Google Scholar 

  13. Abrams D, Garan AR, Abdelbary A, Bacchetta M, Bartlett RH, Beck J, Belohlavek J, Chen YS, Fan E, Ferguson ND, Fowles JA, Fraser J, Gong M, Hassan IF, Hodgson C, Hou X, Hryniewicz K, Ichiba S, Jakobleff WA, Lorusso R, MacLaren G, McGuinness S, Mueller T, Park PK, Peek G, Pellegrino V, Price S, Rosenzweig EB, Sakamoto T, Salazar L, Schmidt M, Slutsky AS, Spaulding C, Takayama H, Takeda K, Vuylsteke A, Combes A, Brodie D, International EN, The Extracorporeal Life Support O (2018) Position paper for the organization of ECMO programs for cardiac failure in adults. Intensive Care Med 44:717–729

    Article  PubMed  Google Scholar 

  14. Combes A, Brodie D, Bartlett R, Brochard L, Brower R, Conrad S, De Backer D, Fan E, Ferguson N, Fortenberry J, Fraser J, Gattinoni L, Lynch W, MacLaren G, Mercat A, Mueller T, Ogino M, Peek G, Pellegrino V, Pesenti A, Ranieri M, Slutsky A, Vuylsteke A, International EN (2014) Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med 190:488–496

    Article  PubMed  Google Scholar 

  15. Douflé G, Roscoe A, Billia F, Fan E (2015) Echocardiography for adult patients supported with extracorporeal membrane oxygenation. Crit Care 19:326

    Article  PubMed  PubMed Central  Google Scholar 

  16. Donker DW, Meuwese CL, Braithwaite SA, Broomé M, van der Heijden JJ, Hermens JA, Platenkamp M, de Jong M, Janssen JGD, Balik M, Belohlavek J (2018) Echocardiography in extracorporeal life support: a key player in procedural guidance, tailoring and monitoring. Perfusion 33:31–41

    Article  PubMed  Google Scholar 

  17. Platts DG, Sedgwick JF, Burstow DJ, Mullany DV, Fraser JF (2012) The role of echocardiography in the management of patients supported by extracorporeal membrane oxygenation. J Am Soc Echocardiogr 25:131–141

    Article  PubMed  Google Scholar 

  18. Douflé G, Su E, Thiagarajan R, Donker DW, Fan E (2022) Bedside ultrasound for ECMO. In: MacLaren G, Brodie D, Lorusso R, Peek G, Thiagarajan R, Vercaemst L (eds) Extracorporeal Life Support: the ELSO red book, 6th edition. Ann Arbor, Michigan. Extracorporeal Life Support Organization, United States, pp. 623–642

  19. Vieillard-Baron A, Millington SJ, Sanfilippo F, Chew M, Diaz-Gomez J, McLean A, Pinsky MR, Pulido J, Mayo P, Fletcher N (2019) A decade of progress in critical care echocardiography: a narrative review. Intensive Care Med 45:770–788

    Article  PubMed  Google Scholar 

  20. Bréchot N, Hajage D, Kimmoun A, Demiselle J, Agerstrand C, Montero S, Schmidt M, Luyt C, Lebreton G, Hékimian G, Flecher E, Zogheib E, Levy B, Slutsky A, Brodie D, Asfar P, Combes A (2020) Venoarterial extracorporeal membrane oxygenation to rescue sepsis-induced cardiogenic shock: a retrospective, multicentre, international cohort study. The Lancet 396:545–552

    Article  Google Scholar 

  21. Bunge JJH, Caliskan K, Gommers D, Reis Miranda D (2018) Right ventricular dysfunction during acute respiratory distress syndrome and veno-venous extracorporeal membrane oxygenation. J Thorac Dis 10:S674–S682

    Article  PubMed  PubMed Central  Google Scholar 

  22. Levy D, Desnos C, Lebreton G, Thery G, Pineton de Chambrun M, Leprince P, Hammoudi N, Schmidt M, Combes A, Hekimian G (2023) Early Reversal of right ventricular dysfunction after venovenous extracorporeal membrane oxygenation in patients with COVID-19 pneumonia. Am J Respir Crit Care Med 207:784–787

    Article  CAS  PubMed  Google Scholar 

  23. Falk L, Sallisalmi M, Lindholm JA, Lindfors M, Frenckner B, Broomé M, Broman LM (2019) Differential hypoxemia during venoarterial extracorporeal membrane oxygenation. Perfusion 34:22–29

    Article  PubMed  Google Scholar 

  24. Lazzeri C, Bonizzoli M, Cianchi G, Batacchi S, Guetti C, Cozzolino M, Bernardo P, Peris A (2018) Right ventricular dysfunction and pre implantation vasopressors in refractory ARDS supported by VV-ECMO. Heart Lung Circ 27:1483–1488

    Article  PubMed  Google Scholar 

  25. Kon ZN, Bittle GJ, Pasrija C, Pham SM, Mazzeffi MA, Herr DL, Sanchez PG, Griffith BP (2017) Venovenous versus venoarterial extracorporeal membrane oxygenation for adult patients with acute respiratory distress syndrome requiring precannulation hemodynamic support: a review of the ELSO registry. Ann Thorac Surg 104:645–649

    Article  PubMed  Google Scholar 

  26. Zochios V, Yusuff H, Antonini MV, Schmidt M, Shekar K, for Protecting the Right Ventricle N, (2023) Veno-pulmonary arterial extracorporeal membrane oxygenation in severe acute respiratory distress syndrome: should we consider mechanical support of the pulmonary circulation from the outset? ASAIO J 69:511–518

    Article  PubMed  Google Scholar 

  27. Hoetzenecker K, Donahoe L, Yeung JC, Azad S, Fan E, Ferguson ND, Del Sorbo L, de Perrot M, Pierre A, Yasufuku K, Singer L, Waddell TK, Keshavjee S, Cypel M (2018) Extracorporeal life support as a bridge to lung transplantation-experience of a high-volume transplant center. J Thorac Cardiovasc Surg 155(1316–1328):e1311

    Google Scholar 

  28. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  29. Karami M, Mandigers L, Miranda DDR, Rietdijk WJR, Binnekade JM, Knijn DCM, Lagrand WK, den Uil CA, Henriques JPS, Vlaar APJ (2021) Survival of patients with acute pulmonary embolism treated with venoarterial extracorporeal membrane oxygenation: a systematic review and meta-analysis. J Crit Care 64:245–254

    Article  CAS  PubMed  Google Scholar 

  30. Bhalla A, Attaran R (2020) Mechanical circulatory support to treat pulmonary embolism: venoarterial extracorporeal membrane oxygenation and right ventricular assist devices. Tex Heart Inst J 47:202–206

    Article  PubMed  PubMed Central  Google Scholar 

  31. Peris A, Lazzeri C, Cianchi G, Bonizzoli M, Batacchi S, Bernardo P, Valente S, Gensini GF (2015) Clinical significance of echocardiography in patients supported by venous-venous extracorporeal membrane oxygenation. J Artif Organs 18:99–105

    Article  CAS  PubMed  Google Scholar 

  32. Burns J, Cooper E, Salt G, Gillon S, Camporota L, Daly K, Barrett NA (2016) Retrospective observational review of percutaneous cannulation for extracorporeal membrane oxygenation. ASAIO J 62:325–328

    Article  CAS  PubMed  Google Scholar 

  33. Adriaansen EJM, Hermens JAJ, Broomé M, Pladet L, Dubois E, Donker DW, Meuwese CL (2023) Cardiac tamponade during venoarterial extracorporeal membrane oxygenation: a case report. J Med Case Rep 17:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosseel T, Van Puyvelde T, Voigt JU, Dauwe D, Meyns B, Dewolf P, Vandenbriele C (2022) How to perform focused transoesophageal echocardiography during extracorporeal cardiopulmonary resuscitation? Eur Heart J Cardiovasc Imaging 24:12–14

    Article  PubMed  Google Scholar 

  35. Fair J, Mallin MP, Adler A, Ockerse P, Steenblik J, Tonna J, Youngquist ST (2019) Transesophageal echocardiography during cardiopulmonary resuscitation is associated with shorter compression pauses compared with transthoracic echocardiography. Ann Emerg Med 73:610–616

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fair J, Mallin M, Mallemat H, Zimmerman J, Arntfield R, Kessler R, Bailitz J, Blaivas M (2018) Transesophageal echocardiography: guidelines for point-of-care applications in cardiac arrest resuscitation. Ann Emerg Med 71:201–207

    Article  PubMed  Google Scholar 

  37. Matthay MA, Arabi Y, Arroliga AC, Bernard G, Bersten AD, Brochard LJ, Calfee CS, Combes A, Daniel BM, Ferguson ND, Gong MN, Gotts JE, Herridge MS, Laffey JG, Liu KD, Machado FR, Martin TR, McAuley DF, Mercat A, Moss M, Mularski RA, Pesenti A, Qiu H, Ramakrishnan N, Ranieri VM, Riviello ED, Rubin E, Slutsky AS, Thompson BT, Twagirumugabe T, Ware LB, Wick KD (2023) A new global definition of acute respiratory distress syndrome. Am J Respir Crit Care Med 209(1):37–47

    Article  PubMed Central  Google Scholar 

  38. Heldeweg MLA, Smit MR, Kramer-Elliott SR, Haaksma ME, Smit JM, Hagens LA, Heijnen NFL, Jonkman AH, Paulus F, Schultz MJ, Girbes ARJ, Heunks LMA, Bos LDJ, Tuinman PR (2022) Lung ultrasound signs to diagnose and discriminate interstitial syndromes in ICU patients: a diagnostic accuracy study in two cohorts. Crit Care Med 50:1607–1617

    Article  PubMed  Google Scholar 

  39. Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, Melniker L, Gargani L, Noble VE, Via G, Dean A, Tsung JW, Soldati G, Copetti R, Bouhemad B, Reissig A, Agricola E, Rouby JJ, Arbelot C, Liteplo A, Sargsyan A, Silva F, Hoppmann R, Breitkreutz R, Seibel A, Neri L, Storti E, Petrovic T, International Liaison Committee on Lung Ultrasound for International Consensus Conference on Lung U (2012) International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 38:577–591

    Article  PubMed  Google Scholar 

  40. Price S, Platz E, Cullen L, Tavazzi G, Christ M, Cowie MR, Maisel AS, Masip J, Miro O, McMurray JJ, Peacock WF, Martin-Sanchez FJ, Di Somma S, Bueno H, Zeymer U, Mueller C, Acute Heart Failure Study Group of the European Society of Cardiology Acute Cardiovascular Care A (2017) Expert consensus document: Echocardiography and lung ultrasonography for the assessment and management of acute heart failure. Nat Rev Cardiol 14(7):427–440

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nanjayya VB, Murphy D, ELSO guidelines: Ultrasound Guidance for Extra-corporeal Membrane Oxygenation General Guidelines. ELSO Guidelines https://www.elsoorg/Resources/Guidelinesaspx

  42. Conrad SA, Grier LR, Scott LK, Green R, Jordan M (2015) Percutaneous cannulation for extracorporeal membrane oxygenation by intensivists: a retrospective single-institution case series. Crit Care Med 43:1010–1015

    Article  CAS  PubMed  Google Scholar 

  43. Morales Castro D, Abdelnour-Berchtold E, Urner M, Dragoi L, Cypel M, Fan E, Douflé G (2022) Transesophageal echocardiography-guided extracorporeal membrane oxygenation cannulation in COVID-19 patients. J Cardiothorac Vasc Anesth 36:4296–4304

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yastrebov K, Manganas C, Kapalli T, Peeceeyen S (2014) Right ventricular loop indicating malposition of J-wire introducer for double lumen bicaval venovenous extracorporeal membrane oxygenation (VV ECMO) cannula. Heart Lung Circ 23:e4-7

    Article  PubMed  Google Scholar 

  45. The Alfred ICU, ECMO.icu https://ecmoicu/procedures-percutaneous-ecmo-cannulation

  46. Basilio C, Fontoura A, Fernandes J, Roncon-Albuquerque R Jr, Paiva JA (2021) Cardiac tamponade complicating extracorporeal membrane oxygenation: a single-centre experience. Heart Lung Circ 30:1540–1544

    Article  PubMed  Google Scholar 

  47. Viau-Lapointe J, Douflé G (2019) Transthoracic view of extracorporeal membrane oxygenation cannulae. Am J Resp Crit Care Med 199:e39–e40

    Article  PubMed  Google Scholar 

  48. Nowak-Machen M, Schmid E, Schlensak C, Consferent C, Haeberle HA, Rosenberger P, Magunia H, Hilberath JN (2016) Safety of transesophageal echocardiography during extracorporeal life support. Perfusion. https://doi.org/10.1177/0267659116647472

    Article  PubMed  Google Scholar 

  49. Ruisanchez C, Sarralde JA, Gonzalez-Fernandez C, Dominguez MJ (2017) Sudden dysfunction of veno-venous extracorporeal membrane oxygenation caused by intermittent cannula obstruction: the key role of echocardiography. Intensive Care Med 43:1055–1056

    Article  PubMed  Google Scholar 

  50. Ng PY, Ma TSK, Ip A, Lee MK, Ng AK, Ngai CW, Chan WM, Siu CW, Sin WC (2022) Sensitivity of ventricular systolic function to afterload during veno-arterial extracorporeal membrane oxygenation. ESC Heart Fail 9:3241–3253

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tavazzi G, Alviar CL, Colombo CNJ, Dammassa V, Price S, Vandenbriele C (2023) How to unload the left ventricle during veno-arterial extracorporeal membrane oxygenation. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jead061

    Article  PubMed  Google Scholar 

  52. Roumy A, Liaudet L, Rusca M, Marcucci C, Kirsch M (2020) Pulmonary complications associated with veno-arterial extra-corporeal membrane oxygenation: a comprehensive review. Crit Care 24:212

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xie A, Forrest P, Loforte A (2019) Left ventricular decompression in veno-arterial extracorporeal membrane oxygenation. Ann Cardiothorac Surg 8:9–18

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ezad SM, Ryan M, Donker DW, Pappalardo F, Barrett N, Camporota L, Price S, Kapur NK, Perera D (2023) Unloading the left ventricle in venoarterial ECMO. in whom, when, and how? Circulation 147:1237–1250

    Article  PubMed  Google Scholar 

  55. Chad T, Yusuff H, Zochios V, Pettenuzzo T, Fan E, Schmidt M, Protecting the Right Ventricle n, (2022) right ventricular injury increases mortality in patients with acute respiratory distress syndrome on veno-venous extracorporeal membrane oxygenation: a systematic review and meta-analysis. ASAIO J 69(1):e14-22

    Article  PubMed  Google Scholar 

  56. Körver EP, Ganushchak YM, Simons AP, Donker DW, Maessen JG, Weerwind PW (2012) Quantification of recirculation as an adjuvant to transthoracic echocardiography for optimization of dual-lumen extracorporeal life support. Intensive Care Med 38:906–909

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schmidt M, Tachon G, Devilliers C, Muller G, Hekimian G, Brechot N, Merceron S, Luyt CE, Trouillet JL, Chastre J, Leprince P, Combes A (2013) Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults. Intensive Care Med 39:838–846

    Article  CAS  PubMed  Google Scholar 

  58. Meuwese CL, Brodie D, Donker DW (2022) The ABCDE approach to difficult weaning from venoarterial extracorporeal membrane oxygenation. Crit Care 26:216

    Article  PubMed  PubMed Central  Google Scholar 

  59. Abusaid GH, Khalife WI (2012) Reduced coronary blood flow in cardiac tamponade: mystery solved. J Invasive Cardiol 24:E328-329

    PubMed  Google Scholar 

  60. Dragoi L, Teijeiro-Paradis R, Douflé G (2022) When is tamponade not an echocardiographic diagnosis... Or is it ever? Echocardiography 39:880–885

    Article  PubMed  Google Scholar 

  61. Kondo T, Morimoto R, Yokoi T, Yamaguchi S, Kuwayama T, Haga T, Hiraiwa H, Sugiura Y, Watanabe N, Kano N, Ichii T, Fukaya K, Sawamura A, Okumura T, Yoshizumi T, Mutsuga M, Fujimoto K, Matsuda N, Usui A, Murohara T (2019) Hemodynamics of cardiac tamponade during extracorporeal membrane oxygenation support in a patient with fulminant myocarditis. J Cardiol Cases 19:22–24

    Article  PubMed  Google Scholar 

  62. Bennett CE, Tweet MS, Michelena HI, Schears GJ, Mulvagh SL (2017) Safety and Feasibility of Contrast Echocardiography for ECMO Evaluation. JACC Cardiovasc Imaging 10:603–604

    Article  PubMed  Google Scholar 

  63. Platts DG, Shiino K, Chan J, Burstow DJ, Scalia GM, Fraser JF (2019) Echocardiographic assessment of myocardial function and mechanics during veno-venous extracorporeal membrane oxygenation. Echo Res Pract 6:25–35

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lashin H, Shepherd S, Smith A (2022) Contrast-enhanced echocardiography application in patients supported by extracorporeal membrane oxygenation (ECMO): a narrative review. J Cardiothorac Vasc Anesth 36:2080–2089

    Article  PubMed  Google Scholar 

  65. Buchtele N, Staudinger T, Schwameis M, Schorgenhofer C, Herkner H, Hermann A, Ei U (2020) Feasibility and safety of watershed detection by contrast-enhanced ultrasound in patients receiving peripheral venoarterial extracorporeal membrane oxygenation: a prospective observational study. Crit Care 24:126

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang R, Zhou M, Man Y, Zhu Y, Ding W, Liu Q, Sun B, Yan L, Zhang Y, Zhou H, Wang L (2023) Lung ultrasound to evaluate pulmonary changes in patients with cardiogenic shock undergoing extracorporeal membrane oxygenation: a retrospective study. BMC Anesthesiol 23:181

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lichtenstein DA (2017) Lung ultrasound (in the Critically Ill) superior to CT: the example of lung sliding. Korean J Crit Care Med 32:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ntoumenopoulos G, Buscher H, Scott S (2021) Lung ultrasound score as an indicator of dynamic lung compliance during veno-venous extra-corporeal membrane oxygenation. Int J Artif Organs 44:194–198

    Article  CAS  PubMed  Google Scholar 

  69. Briganti DN, Choi CE, Nguyen J, Lanks CW (2023) Determinants of point-of-care ultrasound lung sliding amplitude in mechanically ventilated patients. Ultrasound J 15:25

    Article  PubMed  PubMed Central  Google Scholar 

  70. Curry S, Tan A, Gargani L, Ng O, Roscoe A, Salaunkey K, Agrawal B, Vuylsteke A, Fowles JA, Rubino A (2021) Lung ultrasound and the role of lung aeration score in patients with acute respiratory distress syndrome on extracorporeal membrane oxygenation. Int J Artif Organs 44:854–860

    Article  CAS  PubMed  Google Scholar 

  71. Moller-Sorensen H, Gjedsted J, Lind Jorgensen V, Lindskov Hansen K (2020) COVID-19 assessment with bedside lung ultrasound in a population of intensive care patients treated with mechanical ventilation and ECMO. Diagnostics 10:447

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mongodi S, Pozzi M, Orlando A, Bouhemad B, Stella A, Tavazzi G, Via G, Iotti GA, Mojoli F (2018) Lung ultrasound for daily monitoring of ARDS patients on extracorporeal membrane oxygenation: preliminary experience. Intensive Care Med 44:123–124

    Article  PubMed  Google Scholar 

  73. Pasqueron J, Dureau P, Arcile G, Duceau B, Hariri G, Lepere V, Lebreton G, Rouby JJ, Bougle A (2022) Usefulness of lung ultrasound for early detection of hospital-acquired pneumonia in cardiac critically ill patients on venoarterial extracorporeal membrane oxygenation. Ann Intensive Care 12:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Caturegli G, Zhang LQ, Mayasi Y, Gusdon AM, Ergin B, Ponomarev V, Kim BS, Keller S, Geocadin RG, Whitman GJR, Cho SM, Ziai W, Investigators H (2023) Characterization of cerebral hemodynamics with TCD in patients undergoing VA-ECMO and VV-ECMO: a prospective observational study. Neurocrit Care 38:407–413

    Article  CAS  PubMed  Google Scholar 

  75. Rasulo FA, Calza S, Robba C, Taccone FS, Biasucci DG, Badenes R, Piva S, Savo D, Citerio G, Dibu JR, Curto F, Merciadri M, Gritti P, Fassini P, Park S, Lamperti M, Bouzat P, Malacarne P, Chieregato A, Bertuetti R, Aspide R, Cantoni A, McCredie V, Guadrini L, Latronico N (2022) Transcranial doppler as a screening test to exclude intracranial hypertension in brain-injured patients: the IMPRESSIT-2 prospective multicenter international study. Crit Care 26:110

    Article  PubMed  PubMed Central  Google Scholar 

  76. Robba C, Goffi A, Geeraerts T, Cardim D, Via G, Czosnyka M, Park S, Sarwal A, Padayachy L, Rasulo F, Citerio G (2019) Brain ultrasonography: methodology, basic and advanced principles and clinical applications. Narrat Rev Intensive Care Med 45:913–927

    Article  Google Scholar 

  77. Bombardieri AM, Annoni F, Partipilo F, Taccone FS (2022) Changes in cerebral hemodynamics after veno-venous extracorporeal membrane oxygenation implementation. Intensive Care Med 48:1659–1660

    Article  PubMed  Google Scholar 

  78. Burzynska M, Uryga A, Kasprowicz M, Czosnyka M, Gozdzik W, Robba C (2023) Cerebral autoregulation, cerebral hemodynamics, and injury biomarkers, in patients with COVID-19 treated with veno-venous extracorporeal membrane oxygenation. Neurocrit Care 39:425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Robba C, Cardim D, Sekhon M, Budohoski K, Czosnyka M (2018) Transcranial Doppler: a stethoscope for the brain-neurocritical care use. J Neurosci Res 96:720–730

    Article  CAS  PubMed  Google Scholar 

  80. Marinoni M, Cianchi G, Trapani S, Migliaccio ML, Bonizzoli M, Gucci L, Cramaro A, Gallerini A, Picciafuochi F, Valente S, Peris A (2018) Retrospective analysis of transcranial doppler patterns in veno-arterial extracorporeal membrane oxygenation patients: feasibility of cerebral circulatory arrest diagnosis. ASAIO J 64:175–182

    Article  PubMed  Google Scholar 

  81. Renwick CM, Curley J (2023) Optic nerve ultrasound for monitoring deteriorating intracranial hemorrhage in a patient on extracorporeal membrane oxygenation: a case report. Cureus 15:e42719

    PubMed  PubMed Central  Google Scholar 

  82. Caturegli G, Kapoor S, Ponomarev V, Kim BS, Whitman GJR, Ziai W, Cho SM, Investigators H (2022) Transcranial Doppler microemboli and acute brain injury in extracorporeal membrane oxygenation: a prospective observational study. JTCVS Tech 15:111–122

    Article  PubMed  PubMed Central  Google Scholar 

  83. Berthoud V, Ellouze O, Constandache T, Martin A, Bouhemad B, Guinot PG (2020) Transcranial doppler waveform patterns in nonpulsatile blood flow under venoarterial extracorporeal membrane oxygenation for brain death diagnosis. ASAIO J 66:e64

    Article  PubMed  Google Scholar 

  84. Cestari M, Gobatto ALN, Hoshino M (2018) Role and limitations of transcranial doppler and brain death of patients on veno-arterial extracorporeal membrane oxygenation. ASAIO J 64:e78

    Article  PubMed  Google Scholar 

  85. Combes A, Leprince P, Luyt CE, Bonnet N, Trouillet JL, Leger P, Pavie A, Chastre J (2008) Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med 36:1404–1411

    Article  PubMed  Google Scholar 

  86. Pineton de Chambrun M, Combes A, Hekimian G (2019) Contrast-enhanced Doppler echography to assess position of the distal leg perfusion line in patients on venoarterial extracorporeal membrane oxygenation: a preliminary study. Artif Organs 43:605–606

    Article  PubMed  Google Scholar 

  87. Iannattone PA, Yang SS, Koolian M, Wong EG, Lipes J (2022) Incidence of venous thromboembolism in adults receiving extracorporeal membrane oxygenation: a systematic review. ASAIO J 68:1523–1528

    Article  CAS  PubMed  Google Scholar 

  88. Guinot PG, Soulignac C, Zogheib E, Guilbart M, Abou-Arab O, Longrois D, Dupont H (2016) Interactions between veno-venous extracorporeal membrane oxygenation and cardiac function: an echocardiographic study upon weaning. Br J Anaesth 117:821–822

    Article  PubMed  Google Scholar 

  89. Gillon SA, Barrett NA, Ioannou N, Camporota L, Victor K, Gowland A, Meadows CI, Langrish C, Tricklebank S, Wyncoll D (2016) Intracardiac right-to-left shunt impeding liberation from veno-venous extracorporeal membrane oxygenation: two case studies. Crit Care Med 44(7):e583–e586

    Article  PubMed  Google Scholar 

  90. Charbonneau F, Chahinian K, Bebawi E, Lavigueur O, Levesque E, Lamarche Y, Serri K, Albert M, Noly PE, Cournoyer A, Cavayas YA (2022) Parameters associated with successful weaning of veno-arterial extracorporeal membrane oxygenation: a systematic review. Crit Care 26:375

    Article  PubMed  PubMed Central  Google Scholar 

  91. Aissaoui N, Guerot E, Combes A, Delouche A, Chastre J, Leprince P, Leger P, Diehl JL, Fagon JY, Diebold B (2012) Two-dimensional strain rate and Doppler tissue myocardial velocities: analysis by echocardiography of hemodynamic and functional changes of the failed left ventricle during different degrees of extracorporeal life support. J Am Soc Echocardiogr 25:632–640

    Article  PubMed  Google Scholar 

  92. Uemura K, Kawada T, Kamiya A, Aiba T, Hidaka I, Sunagawa K, Sugimachi M (2005) Prediction of circulatory equilibrium in response to changes in stressed blood volume. Am J Physiol Heart Circ Physiol 289:H301-307

    Article  CAS  PubMed  Google Scholar 

  93. Brahmbhatt DH, Daly AL, Luk AC, Fan E, Billia F (2021) Liberation from venoarterial extracorporeal membrane oxygenation: a review. Circ Heart Fail 14:e007679

    Article  PubMed  Google Scholar 

  94. Aissaoui N, Luyt CE, Leprince P, Trouillet JL, Leger P, Pavie A, Diebold B, Chastre J, Combes A (2011) Predictors of successful extracorporeal membrane oxygenation (ECMO) weaning after assistance for refractory cardiogenic shock. Intensive Care Med 37:1738–1745

    Article  PubMed  Google Scholar 

  95. Mork SR, Frederiksen CA, Nielsen RR, Lichscheidt E, Christensen S, Greisen JR, Tang M, Vase H, Logstrup BB, Mellemkjaer S, Wiggers HS, Molgaard H, Poulsen SH, Terkelsen CJ, Eiskjaer H (2021) A systematic approach to weaning from extracorporeal membrane oxygenation in patients with refractory cardiac failure. Acta Anaesthesiol Scand 65:936–943

    Article  PubMed  Google Scholar 

  96. Huang KC, Lin LY, Chen YS, Lai CH, Hwang JJ, Lin LC (2018) Three-dimensional echocardiography-derived right ventricular ejection fraction correlates with success of decannulation and prognosis in patients stabilized by venoarterial extracorporeal life support. J Am Soc Echocardiogr 31:169–179

    Article  PubMed  Google Scholar 

  97. Aissaoui N, Caudron J, Leprince P, Fagon J-Y, Lebreton G, Combes A, Diebold B (2017) Right-left ventricular interdependence: a promising predictor of successful extracorporeal membrane oxygenation (ECMO) weaning after assistance for refractory cardiogenic shock. Intensive Care Med 43:592–594

    Article  PubMed  Google Scholar 

  98. Kim D, Park Y, Choi KH, Park TK, Lee JM, Cho YH, Choi JO, Jeon ES, Yang JH (2021) Prognostic implication of RV coupling to pulmonary circulation for successful weaning from extracorporeal membrane oxygenation. JACC Cardiovasc Imaging 14:1523–1531

    Article  PubMed  Google Scholar 

  99. Kim D, Jang WJ, Park TK, Cho YH, Choi JO, Jeon ES, Yang JH (2021) Echocardiographic predictors of successful extracorporeal membrane oxygenation weaning after refractory cardiogenic shock. J Am Soc Echocardiogr 34(414–422):e414

    Article  Google Scholar 

  100. Sato K, Chan J, Appadurai V, Obonyo N, See Hoe L, Suen JY, Fraser JF (2022) Exploration of the utility of speckle-tracking echocardiography during mechanical ventilation and mechanical circulatory support. Crit Care Explor 4:e0666

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lau FM, Chan WK, Mok YT, Lai PCK, Ma SKT, Ngai CW, Sin WC, Kwok WLP, Yu KY, Chan WM, Fraser JF, Ng PY (2023) Feasibility of pump-controlled retrograde trial off in weaning from veno-arterial ECMO in adults-A single-center case series. Artif Organs. https://doi.org/10.1111/aor.14527

    Article  PubMed  Google Scholar 

  102. Au S-Y, Fong K-M, Ng W-YG, Lee K-YM, So S-O, Leung K-HA (2021) Real-time ultrasound-guided bedside closure of arteriotomy wound using MANTA closure device during venoarterial extracorporeal membrane oxygenation decannulation. Perfusion 36:118–121

    Article  PubMed  Google Scholar 

  103. Sun G, Huang S, Zhang G, Zhang Z, Wang B (2023) Outcomes comparison between percutaneous decannulation with perclose ProGlide and surgical decannulation of veno-arterial extracorporeal membrane oxygenation. Perfusion. https://doi.org/10.1177/02676591231194761

    Article  PubMed  Google Scholar 

  104. PParzy G, Daviet F, Puech B, Sylvestre A, Guervilly C, Porto A, Hraiech S, Chaumoitre K, Papazian L, Forel JM. Venous thromboembolism events following venovenous extracorporeal membrane oxygenation for severe acute respiratory syndrome coronavirus 2 based on CT scans. Crit Care Med. 2020;48(10):e971–5. https://doi.org/10.1097/CCM.0000000000004504

  105. Usman AA, Spelde AE, Ibrahim M, Cevasco M, Bermudez C, MacKay E, Khandhar S, Szeto W, Vernick W, Gutsche J (2022) Comprehensive monitoring in patients with dual lumen right atrium to pulmonary artery right ventricular assist device. ASAIO J 68:1461–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bouchez S, Mackensen GB, De Somer F, Herck I, Wouters PF (2012) Transesophageal echocardiographic image of a retained fibrin sleeve after removal of a venous extracorporeal membrane oxygenation cannula. J Cardiothorac Vasc Anesth 26:883–886

    Article  PubMed  Google Scholar 

  107. Sawada K, Kawakami S, Murata S, Nishimura K, Tahara Y, Hosoda H, Nakashima T, Kataoka Y, Asaumi Y, Noguchi T, Sugimachi M, Fujita T, Kobayashi J, Yasuda S (2021) Predicting parameters for successful weaning from veno-arterial extracorporeal membrane oxygenation in cardiogenic shock. ESC Heart Fail 8:471–480

    Article  PubMed  Google Scholar 

  108. Cavarocchi NC, Pitcher HT, Yang Q, Karbowski P, Miessau J, Hastings HM, Hirose H (2013) Weaning of extracorporeal membrane oxygenation using continuous hemodynamic transesophageal echocardiography. J Thorac Cardiovasc Surg 146:1474–1479

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GD, JF, AC planned the review. GD, LD, KS, DMC wrote the first draft. All authors were involved in critical revision of the final manuscript and approved it.

Corresponding author

Correspondence to Ghislaine Douflé.

Ethics declarations

Conflicts of interest

EF disclosed receiving consulting fees from ALung Technologies, Baxter, Getinge, Inspira, Vasomune, Zoll Medical and honoraria from Getinge. AC disclosed receiving honoraria from Getinge, Baxter and Xenios. DWD disclosed receiving grants contract from Maquet and Sonion which were paid to the University of Twente, Netherlands as well as consulting fees from Hbox therapies. HS received honoraria from Astra Zeneca and received support from 3CT to attend 3CT workshops. DMC received a Canadian Institutes of Health Research (CIHR) Research Excellence, Diversity, and Independence (REDI) Early Career Transition Award. All other authors have disclosed that they do not have any conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Transthoracic parasternal long axis view of a patient referred immediately post-partum for consideration of venovenous ECMO for severe respiratory failure. The mitral valve is calcified and exhibits a typical diastolic doming consistent with rheumatic heart disease. The left atrium is severely dilated. The transmitral gradient calculated at 19 mmHg with a heart rate of 83 beats/ minute indicated very severe mitral stenosis. The hypoxemia improved with aggressive diuresis and the patient was later referred to cardiac surgery. LA: left atrium; LV: left ventricle; RV: right ventricle.  Supplementary file1 (MP4 4934 KB)

Transesophageal upper-esophageal view of the superior vena cava depicting a thrombus. Right PA: right pulmonary artery; SVC: superior vena cava.  Supplementary file2 (MP4 2904 KB)

Patient referred for consideration for venovenous ECMO for severe hypoxemic respiratory failure. Transthoracic view obtained from a window more posterior than a transthoracic apical 4-chamber view, depicting a large left pleural effusion. A left thoracocentesis was performed with a significant improvement in oxygenation. ECMO was not required in that case. LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle Supplementary file3 (MP4 5198 KB)

Supplementary appendix Supplementary appendix Supplementary file4 (DOCX 55 KB)

Transthoracic subcostal bicaval view. This view is obtained from the subcostal window with the marker of the probe directed cephalad with a slight tilt of the probe towards the patient’s right. A cephalad rocking movement may also be required. Small rotational movements may be needed to open the superior vena cava. IVC: inferior vena cava; LA: left atrium; RA: right atrium; SVC: superior vena cava.  Supplementary file5 (MP4 8003 KB)

Transesophageal view of the inferior vena cava (IVC) at the gastro-esophageal junction. The 3-dimensional biplane function was activated allowing visualization of the IVC in long (left) and short axis (right). Note that on the long axis only one wire can be visualized, while both wires were within the IVC.  Supplementary file6 (MP4 3092 KB)

134_2024_7333_MOESM7_ESM.pdf

Main ultrasound windows for patients on VA ECMO from cannulation to decannulation.  a. Ultrasound image of a vessel with guidewire within it b. Truncated transesophageal midesophageal bicaval view with the venous wire in the superior vena cava. LA: left atrium; RA: right atrium; SVC: superior vena cavac. Transesophageal view of the descending aorta with the arterial wire seen in 2 orthogonal planes with the biplane function d. Truncated transesophageal midesophageal bicaval view with drainage cannula with its tip at the right atrium-superior vena cava junction. LA: left atrium; RA: right atrium; SVC: superior vena cava e. Transthoracic parasternal long axis view showing a non-opening aortic valve and spontaneous echocardiographic contrast in the ascending aorta. LA: left atrium; LV: left ventricle; RV: right ventriclef. Transcranial Doppler depicting the left MCA. ACA: anterior cerebral artery; CP: cerebral peduncles; MCA: middle cerebral arteryg. Transthoracic apical 4-chamber view of a patient on VA ECMO with an atrial septostomy. LA: left atrium; LV: left ventricle; RA: right atrium; right ventricleh. Transesophageal midesophageal long axis view of a patient on VA ECMO with an Impella® device. LA: left atrium; LV: left ventricle i. Transthoracic subcostal 4-chamber view showing a pericardial effusion. LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle; P eff: pericardial effusion j. Transthoracic apical 4-chamber view with 3-dimensional assessment of the RV function. LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventriclek. Transesophageal deep transgastric view where the left ventricular outflow tract velocity time integral is measured during a weaning trial. LV: left ventricle. l. Transthoracic subcostal view of the inferior vena cava (IVC) post ECMO decannulation. A non-occlusive thrombus is seen within the IVC. Supplementary file7 (PDF 4486 KB)

Transesophageal view at the gastro-esophageal junction and midesophageal bicaval level showing the advancement of the drainage cannula over the femoral guidewire. LA: left atrium; RA: right atrium; SVC: superior vena cava.  Supplementary file8 (MP4 21101 KB)

Transesophageal view of the descending aorta showing the aortic guidewire on two orthogonal incidences with the biplane function. Supplementary file9 (MP4 1749 KB)

134_2024_7333_MOESM10_ESM.pdf

Main ultrasound windows for patients on VV ECMO (two-site cannulation) from cannulation to decannulation a. Ultrasound image of a vessel with guidewire within itb. Truncated transesophageal midesophageal bicaval view with two wires within the superior vena cava. LA: left atrium; RA: right atrium; SVC: superior vena cavac. Transesophageal midesophageal bicaval view with drainage cannula with its tip within the right atriumd. Ultrasound view of a densely consolidated lung of a patient on VV ECMO. The dense consolidation allows the visualization of the pulmonary artery with its segmental branches. PA: pulmonary arterye. Transthoracic right parasternal bicaval view depicting the drainage and return cannula in the inferior vena cava and superior vena cava, respectively. RA: right atriumf. Transthoracic parasternal right ventricular inflow-outflow view showing a drainage cannula with the tip abutting against the interatrial septum, which may in some cases cause drainage insufficiency. AV: aortic valve, LA: left atrium, PA: pulmonary artery, RA: right atrium, RV: right ventricleg. Transthoracic parasternal short axis view at the mid-papillary level showing a severely dilated right ventricle and significant paradoxical septal motion indicative of elevated pulmonary pressures. LV: left ventricle; RV: right ventricleh. Transthoracic subcostal 4-chamber view showing a pericardial effusion. LA: left atrium; LV: left ventricle; P eff: pericardial effusion; RA: right atrium; RV: right ventriclei. Transesophageal midesophageal bicaval view with a positive bubble study at the time of ECMO weaning with significant hypoxemia during trials off ECMO. LA: left atrium; RA: right atrium; SVC: superior vena cavaj. Transthoracic subcostal view of the inferior vena cava (IVC) post ECMO decannulation. A non-occlusive thrombus is seen within the IVC Supplementary file10 (PDF 278 KB)

Transesophageal midesophageal bicaval view showing both wires in both vena cavae. LA: left atrium; RA: right atrium. Supplementary file11 (MP4 3082 KB)

Panel A: transesophageal midesophageal bicaval view of a patient on VV ECMO with a femoro-femoral configuration. Panel B: modified midesophageal view showing the cannulae in short axis. The multistage drainage cannula is highlighted in blue, and the return cannula is in red. AV: aortic valve; LA: left atrium; RA: right atrium; RV: right ventricle; SVC: superior vena cava. Supplementary file12 (MP4 7071 KB)

Transesophageal midesophageal bicaval view of a patient being placed on VV ECMO. The multistage drainage cannula is seen within the right atrium, with its tip just below the superior vena cava-right atrial junction. LA: left atrium; RA: right atrium; SVC: superior vena cava. Supplementary file13 (MP4 2892 KB)

Transesophageal upper-esophageal view of the superior vena cava of a patient being placed on VV ECMO (femoro-jugular configuration). The return cannula is seen within the superior vena cava, with its tip a few centimeters above the superior vena cava-right atrial junction. RPA: right pulmonary artery; SVC: superior vena cava Supplementary file14 (MP4 3726 KB)

Transthoracic views of a patient already on VV ECMO support. Significant drainage insufficiency prompted a reconfiguration, as the initial drainage cannula was in the inferior vena cava and was abutting against the posterior wall of the IVC. An attempt at advancing the cannula was unsuccessful, as it kept abutting against the posterior wall of the IVC and could not be advanced further. Panel A: Right parasternal bicaval view (obtained with the probe parallel to the sternal border with the marker cephalad) showing the advancement of the new drainage cannula over the wire. Panel B: final position of the new drainage cannula with the tip at the superior vena cava-right atrium junction. Panel C: Parasternal right ventricular inflow-outflow. Thirteen days later, the cannula is seen to have inadvertently crossed the interatrial septum. Of note, there were no changes in the cannula position measured at the skin. AV: aortic valve; LA: left atrium; PA: pulmonary artery; RA: right atrium; RV: right ventricle; SVC: superior vena cava. Supplementary file15 (MP4 9729 KB)

Transesophageal midesophageal bicaval view of a patient during cannulation with a dual-lumen bicaval cannula. The cannula is threaded over the guidewire until the tip is in the inferior vena cava. IVC: inferior vena cava; LA: left atrium; RA: right atrium; SHV: sus hepatic vein Supplementary file16 (MP4 17458 KB)

Transesophageal midesophageal bicaval view of a patient on VV ECMO with a dual-lumen bicaval cannula in place. LA: left atrium; RA: right atrium Supplementary file17 (MP4 4559 KB)

Transesophageal midesophageal bicaval view of a patient on VV ECMO with a dual-lumen bicaval cannula (same patient as in electronic supplementary material 17). The reinfusion flow can be seen on color flow Doppler within the right atrium and directed towards the tricuspid valve. LA: left atrium; RA: right atrium Supplementary file18 (MP4 2897 KB)

Panel A: transthoracic subcostal view showing a dual-lumen bicaval cannula with the tip within the inferior vena cava and the reinfusion hole in the right atrium. Panel B: same view as in panel A with color flow Doppler added with the reinfused blood directed towards the tricuspid valve. RA: right atrium  Supplementary file19 (MP4 3212 KB)

134_2024_7333_MOESM20_ESM.pdf

Main ultrasound windows for patients on VV ECMO with a dual-lumen bicaval cannula from cannulation to decannulation.a. Ultrasound image of a vessel with guidewire within itb. Truncated transesophageal midesophageal bicaval view with a wire within the superior vena cava, crossing the right atrium towards the inferior vena cava. LA: left atrium; RA: right atrium; SVC: superior vena cavac. Transesophageal midesophageal bicaval view with the dual-lumen-bicaval cannula (dlBC) crossing the right atrium. LA: left atrium; RA: right atriumd. Transesophageal midesophageal bicaval view with the dlBC crossing the right atrium with color flow Doppler showing the reinfusion flow directed towards the tricuspid valve. LA: left atrium; RA: right atriume. Ultrasound view of a densely consolidated lung of a patient on VV ECMO. The dense consolidation allows the visualization of the pulmonary artery with its segmental branches. PA: pulmonary arteryf. Transthoracic subcostal view showing the cannula traversing the RA and the tip in the inferior vena cava. IVC: inferior vena cava; RA: right atriumg. Transesophageal view of the inferior vena cava at the gastro-esophageal level. IVC: inferior vena cava; SHV: sus hepatic vein h. Transesophageal view of the inferior vena cava at the gastro-esophageal level with color flow Doppler showing an intra-hepatic reinfusion flow. Changes in lung volumes and position can change the relative position of the cannula in relationship to the cardiac chambers and should be checked in case of hypoxemia or elevation of liver enzymesi. Transthoracic parasternal short axis view at the mid-papillary level showing a severely dilated right ventricle and significant paradoxical septal motion indicative of elevated pulmonary pressures. LV: left ventricle; RV: right ventriclej. Transthoracic subcostal 4-chamber view showing a pericardial effusion. LA: left atrium; LV: left ventricle; P eff: pericardial effusion; RA: right atrium; RV: right ventriclek. Transesophageal midesophageal bicaval view with a positive bubble study at the time of ECMO weaning with significant hypoxemia during trials off ECMO. LA: left atrium; RA: right atrium; SVC: superior vena caval. Transthoracic subcostal view of the inferior vena cava post ECMO decannulation. A non-occlusive thrombus is seen within the IVC. IVC: inferior vena cava Supplementary file20 (PDF 321 KB)

Transesophageal midesophageal bicaval view of a patient on ECMO with a dual-lumen RA-PA cannula. LA: left atrium; RA: right atrium; SVC: superior vena cava.  Supplementary file21 (MP4 2380 KB)

Transesophageal midesophageal right ventricular inflow-outflow view of a patient on ECMO with a dual-lumen RA-PA cannula. The tip of the cannula is seen within the main pulmonary artery approximately three centimeters beyond the pulmonary valve. AV: aortic valve; LA: left atrium; PA: pulmonary artery; PV: pulmonary valve; RA: right atrium; RV: right ventricle. Supplementary file22 (MP4 3153 KB)

Transesophageal view: midesophageal right ventricular inflow-outflow view of a patient on ECMO with a dual-lumen RA-PA cannula. The reinfusion flow is seen with color flow Doppler within the main pulmonary artery. AV: aortic valve; LA: left atrium; PA: pulmonary artery; PV: pulmonary valve; RA: right atrium; RV: right ventricle.  Supplementary file23 (MP4 2958 KB)

134_2024_7333_MOESM24_ESM.pdf

Main ultrasound windows for patients on veno-pulmonary (V-PA) ECMO from cannulation to decannulation.a. Ultrasound image of a vessel with guidewire within itb. Transesophageal midesophageal right ventricular inflow-outflow view with the wire seen in the right atrium and ventricle and the pulmonary artery. AV: aortic valve; LA: left atrium; PA: pulmonary artery, RA: right atrium, RV: right ventriclec. Transesophageal midesophageal right ventricular inflow-outflow view with the cannula seen in the right atrium and ventricle, and its tip in the main pulmonary artery d. Transesophageal midesophageal right ventricular inflow-outflow view with the cannula seen in the right atrium and ventricle, and its tip in the main pulmonary artery. Color flow Doppler is showing the reinfusion flow in the main pulmonary arterye. Ultrasound view of a densely consolidated lung of a patient on veno-pulmonary ECMO. The dense consolidation allows the visualization of the pulmonary artery with its segmental branches. PA: pulmonary arteryf. Transthoracic parasternal short axis view at the mid-papillary level showing a severely dilated right ventricle and significant paradoxical septal motion indicative of elevated pulmonary pressures upon weaning of the flows. LV: left ventricle; RV: right ventricleg. Transthoracic subcostal 4-chamber view showing a pericardial effusion. LA: left atrium; LV: left ventricle; P eff: pericardial effusion; RA: right atrium; RV: right ventricleh. Transesophageal midesophageal bicaval view with a positive bubble study at the time of ECMO weaning with significant hypoxemia during trials off ECMO. LA: left atrium; RA: right atrium; SVC: superior vena cavaj. Transesophageal upper-esophageal longitudinal view of the superior vena cava post ECMO decannulation. A non-occlusive thrombus is seen within the superior vena cava. SVC: superior vena cava Supplementary file24 (PDF 257 KB)

Transthoracic views of a patient on peripheral VA ECMO with an intra-aortic balloon pump (IABP). Panels A (parasternal long axis view) and B (apical 4-chamber view) were obtained on ECMO flows between 2.2 and 2.7 l/min and IABP with a frequency of 1:1. Despite depicting a pulsatility on the arterial line tracing (with a pulse pressure of approximately 40 mmHg), the aortic valve is not opening, and significant spontaneous echocardiographic contrast is seen in the left ventricle and in the aortic root. On panels C and D, the IABP frequency was set at 1:2 and dobutamine and nitroprusside were initiated. There is significantly less spontaneous echocardiographic contrast seen in the left ventricle and the aortic valve opens with every cardiac contraction. AV: aortic valve; IABP: intra-aortic balloon pump; LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle Supplementary file25 (MP4 5765 KB)

Transthoracic right ventricular inflow-outflow view of a patient on peripheral VA ECMO and left atrial venting via a septostomy. The left atrium venting cannula is seen crossing the interatrial septum and is seen across the left atrium. AV: aortic valve; LA: left atrium; RA: right atrium; RV: right ventricle.  Supplementary file26 (MP4 2942 KB)

Same patient as in electronic supplementary material 26: Transthoracic apical 4-chamber view of a patient on peripheral VA ECMO and left atrial venting via a septostomy. Note the presence of significant residual spontaneous echocardiographic contrast. In addition, although, it seemed that the drainage cannula was crossing the interatrial septum, it was artifactual. It was verified from other views that the drainage cannula was in the superior vena cava.LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle.  Supplementary file27 (MP4 3009 KB)

Transesophageal view of a patient on VA ECMO and Impella®. Midesophageal long axis view depicting the Impella® across the aortic valve. LA: left atrium; LV: left ventricle. Supplementary file28 (MP4 4981 KB)

Panel A: transesophageal midesophageal bicaval view at the time of venovenous ECMO initiation. The tip of the drainage cannula is positioned at the superior vena cava-right atrium (SVC-RA) junction. The return cannula is approximately three cm above the SVC-RA junction. Tidal volumes were 400 ml. Panel B: day 7 of VV ECMO support. Despite high extracorporeal blood flow (5.9 l/min), the patient is now severely hypoxemic (SpO2 78%). Significant recirculation is seen macroscopically and on the pre-membrane blood gases. An echocardiogram was performed to reassess the cannula position. The tip of the drainage cannula is now seen at the mid-atrial level and the return cannula is now only one cm away from the SVC-RA junction. The different cannula position is most likely due to a diaphragmatic shift resulting from significant derecruitment (tidal volumes 35 ml). Panel C: the return cannula was pulled back two cm with a significant improvement in oxygenation (SpO2 improved to 95%) Supplementary file29 (MP4 7947 KB)

Transthoracic subcostal right ventricular inflow-outflow view showing a right atrium-pulmonary artery cannula with the tip in the left pulmonary artery branch. LPA: left pulmonary artery; PV: pulmonary valve; RA: right atrium; RA-PA cannula: right atrium-pulmonary artery cannula; RPA: right pulmonary artery; RV: right ventricle; TV: tricuspid valve. Supplementary file30 (MP4 8952 KB)

Transesophageal midesophageal right ventricular inflow-outflow view of a patient on peripheral VA ECMO. An effusion is seen along the right ventricular wall. Signs of pericardial constraint and hemodynamic compromise are difficult to appreciate given the current ECMO flows. Comparison with previous echocardiograms and decreasing the ECMO flows may help differentiate between small right ventricular size due to unloading from the VA ECMO versus actual cardiac chamber compression due to tamponade. AV: aortic valve; LA: left atrium; RA: right atrium; RV: right ventricle.  Supplementary file31 (MP4 2412 KB)

Transesophageal views of a patient on VA ECMO with a large circumferential pericardial effusion causing tamponade. Panels A (midesophageal long axis view of the left ventricle) and B (transgastric short axis of the left ventricle) before the evacuation of the pericardial effusion. At the time of the echocardiogram in panels A and B, the patient was on similar doses of vasopressors compared to the previous days (Norepinephrine 0.04 mcg/kg/min), urine output was maintained, and lactate was 1. ECMO flows were unchanged at 5.25 l/min with similar rotations per minute. There was, however, a significant decrease in arterial pulsatility (BP 78/75) which prompted a repeat echocardiogram. Of note, there was no pulsus paradoxus observed on the arterial line tracing before the patient lost their pulsatility; however, the tidal volumes were minimal (20 ml). Note the significant left ventricular systolic dysfunction and the minimal opening of the aortic valve. Panels C (midesophageal long axis view) and D (transgastric view at the mid-papillary level) after evacuation of the pericardial effusion. There was a significant improvement in left ventricular contractility. AV: aortic valve; LA: left atrium; LV: left ventricle. Supplementary file32 (MP4 5412 KB)

Transcranial Doppler obtained from the left temporal window of a patient on peripheral VA ECMO. Panel A: the left middle cerebral artery (MCA) is visualized. Anatomic landmarks are labeled; Panel B: same view as in panel A without anatomical landmarks. Only the left MCA, proximal right MCA and the left posterior cerebral artery are well imaged on this view. On panel C, absence of pulsatility is observed in the left MCA (Panel C). ACA: anterior cerebral artery; Ant Com: anterior communicating artery; CP: cerebral peduncles; MCA: middle cerebral artery; PCA: posterior cerebral artery; Post com: posterior communicating artery. Supplementary file33 (MP4 2599 KB)

Transthoracic 3-dimensional right ventricular ejection fraction of a patient on VA ECMO. Supplementary file34 (MP4 2214 KB)

134_2024_7333_MOESM35_ESM.jpg

Summary of main parameters to be assessed during VA ECMO weaning trial. Transthoracic views of a patient on VA ECMO ready to be liberated from VA ECMO. Measurements done at baseline and at 1 liter/min of VA ECMO flow. a. Apical 2-chamber view. Ejection fraction measured with the Simpson’s biplane is 37% b. Tissue Doppler at the lateral mitral annulus on an apical 4-chamber. Systolic tissue Doppler mitral annular velocity is 10 cm/s c. Left ventricular outflow tract velocity time integral of 16 cm d. Parasternal short axis view at the mid-papillary level without significant ventricular interdependence e. Right ventricular fractional area of change on an apical 4-chamber (42%) f. Tissue Doppler at the lateral tricuspid annulus on an apical 4-chamber. Systolic tissue Doppler tricuspid annular velocity is 12 cm/s, g. Right ventricular free wall longitudinal strain of –14% h. Right ventricular 3-dimensional ejection fraction: 30%. Supplementary file35 (JPG 51 KB)

Transesophageal midesophageal 4-chamber view of a patient on VA ECMO with a severely depressed right ventricular strain. RV free wall systolic longitudinal (RVFWSL) strain is –0.7%, while a normal value should be –20% (more negative values represent better contractile function). LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle Supplementary file36 (MP4 1891 KB)

Transesophageal midesophageal 4-chamber view of a patient on VA ECMO with a severely depressed left ventricular strain. Global longitudinal strain average is –2.1%, while a normal value should be beyond –20% (more negative values represent better contractile function). LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle Supplementary file37 (MP4 1684 KB)

Transthoracic subcostal view of the inferior vena cava in long axis post ECMO decannulation. A non-occlusive thrombus is seen within the inferior vena cava (IVC) Supplementary file38 (MP4 3425 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douflé, G., Dragoi, L., Morales Castro, D. et al. Head-to-toe bedside ultrasound for adult patients on extracorporeal membrane oxygenation. Intensive Care Med (2024). https://doi.org/10.1007/s00134-024-07333-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00134-024-07333-7

Keywords

Navigation