Skip to main content

Advertisement

Log in

Therapeutic drug monitoring in childhood idiopathic nephrotic syndrome: a state of the art review

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Immunosuppressants are commonly used as steroid-sparing agents in childhood idiopathic nephrotic syndrome (NS) to induce and sustain remissions. These drugs have narrow therapeutic indices with high inter- and intra-patient variability. Therapeutic drug monitoring (TDM) would therefore be essential to guide the prescription. Multiple factors in NS contribute to additional variability in drug concentrations, especially during relapses. In this article, we review the currently available evidence of TDM in NS and suggest a practical approach for clinicians’ reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marlais M, Wlodkowski T, Printza N, Kronsteiner D, Krisam R, Sauer L, Aksenova M, Ashoor I, Awan A, Bacchetta J (2022) Clinical factors and adverse kidney outcomes in children with antineutrophil cytoplasmic antibody–associated glomerulonephritis. Am J Kidney Dis 81:119–122. https://doi.org/10.1053/j.ajkd.2022.05.013

    Article  PubMed  Google Scholar 

  2. Lee MH, Chan EY, Ma AL (2022) Timely and individualized use of immunosuppression is associated with favourable outcomes in paediatric IgA vasculitis nephritis. Pediatr Nephrol 37:913–914. https://doi.org/10.1007/s00467-021-05405-0

    Article  PubMed  Google Scholar 

  3. Chan EY, Yap DY, Wong W, Wong WH, Wong S, Lin KY, Hui FY, Li JY, Lam SS, Wong JK (2022) Long-term outcomes of children and adolescents with biopsy-proven childhood-onset lupus nephritis. Kidney Int Rep 8:141–150. https://doi.org/10.1016/j.ekir.2022.10.014

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chan EY, Ellen L, Angeletti A, Arslan Z, Basu B, Boyer O, Chan C-Y, Colucci M, Dorval G, Dossier C (2022) Long-term efficacy and safety of repeated rituximab to maintain remission in idiopathic childhood nephrotic syndrome: an international study. J Am Soc Nephrol 33:1193–1207. https://doi.org/10.1681/ASN.2021111472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chan EYH, Yap DYH, Wong WHS, Ho TW, Tong PC, Lai WM, Chan TM, Ma ALT (2022) Demographics and long-term outcomes of children with end-stage kidney disease: a 20-year territory-wide study. Nephrology (Carlton) 27:171–180. https://doi.org/10.1111/nep.14007

    Article  CAS  PubMed  Google Scholar 

  6. Chan EY, Ma AL, Tullus K (2021) When should we start and stop ACEi/ARB in paediatric chronic kidney disease? Pediatr Nephrol 36:1751–1764. https://doi.org/10.1007/s00467-020-04788-w

    Article  PubMed  Google Scholar 

  7. Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, Cook HT, Fervenza FC, Gibson KL, Glassock RJ (2021) Executive summary of the KDIGO 2021 guideline for the management of glomerular diseases. Kidney Int 100:753–779

    Article  PubMed  Google Scholar 

  8. Ehren R, Benz MR, Brinkkötter PT, Dötsch J, Eberl WR, Gellermann J, Hoyer PF, Jordans I, Kamrath C, Kemper MJ (2021) Pediatric idiopathic steroid-sensitive nephrotic syndrome: diagnosis and therapy—short version of the updated German best practice guideline (S2e)—AWMF register no. 166–001, 6/2020. Pediatr Nephrol 36:2971–2985

    Article  PubMed  PubMed Central  Google Scholar 

  9. Trautmann A, Boyer O, Hodson E, Bagga A, Gipson DS, Samuel S, Wetzels J, Alhasan K, Banerjee S, Bhimma R, International Pediatric Nephrology Association (2022) IPNA clinical practice recommendations for the diagnosis and management of children with steroid-sensitive nephrotic syndrome. Pediatr Nephrol 38:877–919. https://doi.org/10.1007/s00467-022-05739-3

  10. Sinha A, Bagga A, Banerjee S, Mishra K, Mehta A, Agarwal I, Uthup S, Saha A, Mishra OP, Expert Group of Indian Society of Pediatric Nephrology (2021) Steroid sensitive nephrotic syndrome: revised guidelines. Indian Pediatr 58:461–481

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zotta F, Vivarelli M, Emma F (2022) Update on the treatment of steroid-sensitive nephrotic syndrome. Pediatr Nephrol 37:303–314

    Article  PubMed  Google Scholar 

  12. Trautmann A, Vivarelli M, Samuel S, Gipson D, Sinha A, Schaefer F, Hui NK, Boyer O, Saleem MA, Feltran L (2020) IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 35:1529–1561

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vasudevan A, Thergaonkar R, Mantan M, Sharma J, Khandelwal P, Hari P, Sinha A, Bagga A, Expert Group of Indian Society of Pediatric Nephrology (2021) Consensus guidelines on management of steroid-resistant nephrotic syndrome. Indian Pediatr 58:650–666

    Article  PubMed  Google Scholar 

  14. Vrhovac B, Sarapa N, Bakran I, Huic M, Macolic-Sarinic V, Francetic I, Wolf-Coporda A, Plavsic F (1995) Pharmacokinetic changes in patients with oedema. Clin Pharmacokinet 28:405–418

    Article  CAS  PubMed  Google Scholar 

  15. Medeiros M, Pérez-Urizar J, Mejía-Gaviria N, Ramírez-López E, Castañeda-Hernández G, Muñoz R (2007) Decreased cyclosporine exposure during the remission of nephrotic syndrome. Pediatr Nephrol 22:84–90

    Article  PubMed  Google Scholar 

  16. Kirpalani A, Rothfels L, Sharma AP, Cuellar CR, Filler G (2019) Nephrotic state substantially enhances apparent mycophenolic acid clearance. Clin Nephrol 91:162

    Article  CAS  PubMed  Google Scholar 

  17. Sobiak J, Resztak M, Zachwieja J, Ostalska-Nowicka D (2022) Inosine monophosphate dehydrogenase activity and mycophenolate pharmacokinetics in children with nephrotic syndrome treated with mycophenolate mofetil. Clin Exp Pharmacol Physiol 49:1197–1208

    Article  CAS  PubMed  Google Scholar 

  18. Sobiak J, Resztak M, Chrzanowska M, Zachwieja J, Ostalska-Nowicka D (2021) The evaluation of multiple linear regression–based limited sampling strategies for mycophenolic acid in children with nephrotic syndrome. Molecules 26:3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sobiak J, Resztak M, Pawiński T, Żero P, Ostalska-Nowicka D, Zachwieja J, Chrzanowska M (2019) Limited sampling strategy to predict mycophenolic acid area under the curve in pediatric patients with nephrotic syndrome: a retrospective cohort study. Eur J Clin Pharmacol 75:1249–1259

    Article  CAS  PubMed  Google Scholar 

  20. Bergan S, Bremer S, Vethe NT (2016) Drug target molecules to guide immunosuppression. Clin Biochem 49:411–418

    Article  CAS  PubMed  Google Scholar 

  21. Weber LT (2015) Therapeutic drug monitoring in pediatric renal transplantation. Pediatr Nephrol 30:253–265

    Article  PubMed  Google Scholar 

  22. Wallemacq PE (2004) Therapeutic monitoring of immunosuppressant drugs. Where are we? Clin Chem Lab Med 42:1204–1211

    Article  CAS  PubMed  Google Scholar 

  23. Brate EM, Finley DM, Grote J, Holets-McCormack S, Ozaeta PF, Pacenti D, Peart JE, Piktel RE, Ramsay CS, Rupprecht KR (2010) Development of an Abbott ARCHITECT cyclosporine immunoassay without metabolite cross-reactivity. Clin Biochem 43:1152–1157

    Article  CAS  PubMed  Google Scholar 

  24. Shigematsu T, Suetsugu K, Yamamoto N, Tsuchiya Y, Masuda S (2020) Comparison of 4 commercial immunoassays used in measuring the concentration of tacrolimus in blood and their cross-reactivity to its metabolites. Ther Drug Monit 42:400–406

    Article  CAS  PubMed  Google Scholar 

  25. Westley IS, Taylor PJ, Salm P, Morris RG (2007) Cloned enzyme donor immunoassay tacrolimus assay compared with high-performance liquid chromatography-tandem mass spectrometry and microparticle enzyme immunoassay in liver and renal transplant recipients. Ther Drug Monit 29:584–591

    Article  CAS  PubMed  Google Scholar 

  26. Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S (2021) Personalized therapy for mycophenolate: consensus report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 43:150–200

    Article  CAS  PubMed  Google Scholar 

  27. Counsilman CE, Jol–van der Zijde CM, Stevens J, Cransberg K, Bredius RG, Sukhai RN (2015) Pharmacokinetics of rituximab in a pediatric patient with therapy-resistant nephrotic syndrome. Pediatr Nephrol 30:1367–1370

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brunet M, Van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, Lemaitre F, Marquet P, Seger C, Shipkova M (2019) Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report. Ther Drug Monit 41:261–307

    Article  CAS  PubMed  Google Scholar 

  29. Kim JS, Aviles DH, Silverstein DM, LeBlanc PL, MattiVehaskari V (2005) Effect of age, ethnicity, and glucocorticoid use on tacrolimus pharmacokinetics in pediatric renal transplant patients. Pediatr Transplant 9:162–169

    Article  CAS  PubMed  Google Scholar 

  30. Cooney GF, Habucky K, Hoppu K (1997) Cyclosporin pharmacokinetics in paediatric transplant recipients. Clin Pharmacokinet 32:481–495

    Article  CAS  PubMed  Google Scholar 

  31. Christopher J, Dunn J, Caroline M, Greg L, Karen L (2001) Cyclosporin: an updated review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion-based formulation (Neoral®) l in organ transplantation. Drugs 61:1957–2016

    Article  Google Scholar 

  32. Schijvens AM, van Hesteren FH, Cornelissen EA, Bootsma-Robroeks CM, Brüggemann RJ, Burger DM, de Wildt SN, Schreuder MF, Ter Heine R (2019) The potential impact of hematocrit correction on evaluation of tacrolimus target exposure in pediatric kidney transplant patients. Pediatr Nephrol 34:507–515

    Article  PubMed  Google Scholar 

  33. Kamei K, Ito S, Nozu K, Fujinaga S, Nakayama M, Sako M, Saito M, Yoneko M, Iijima K (2009) Single dose of rituximab for refractory steroid-dependent nephrotic syndrome in children. Pediatr Nephrol 24:1321–1328

    Article  PubMed  Google Scholar 

  34. Seitz-Polski B, Dahan K, Debiec H, Rousseau A, Andreani M, Zaghrini C, Ticchioni M, Rosenthal A, Benzaken S, Bernard G (2019) High-dose rituximab and early remission in PLA2R1-related membranous nephropathy. Clin J Am Soc Nephrol 14:1173–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Iijima K, Sako M, Oba MS, Ito S, Hataya H, Tanaka R, Ohwada Y, Kamei K, Ishikura K, Yata N (2014) Cyclosporine C2 monitoring for the treatment of frequently relapsing nephrotic syndrome in children: a multicenter randomized phase II trial. Clin J Am Soc Nephrol 9:271–278

    Article  CAS  PubMed  Google Scholar 

  36. Ishikura K, Ikeda M, Hattori S, Yoshikawa N, Sasaki S, Iijima K, Nakanishi K, Yata N, Honda M (2008) Effective and safe treatment with cyclosporine in nephrotic children: a prospective, randomized multicenter trial. Kidney Int 73:1167–1173

    Article  CAS  PubMed  Google Scholar 

  37. Sinha A, Gupta A, Kalaivani M, Hari P, Dinda AK, Bagga A (2017) Mycophenolate mofetil is inferior to tacrolimus in sustaining remission in children with idiopathic steroid-resistant nephrotic syndrome. Kidney Int 92:248–257

    Article  CAS  PubMed  Google Scholar 

  38. Gulati A, Sinha A, Gupta A, Kanitkar M, Sreenivas V, Sharma J, Mantan M, Agarwal I, Dinda AK, Hari P (2012) Treatment with tacrolimus and prednisolone is preferable to intravenous cyclophosphamide as the initial therapy for children with steroid-resistant nephrotic syndrome. Kidney Int 82:1130–1135

    Article  CAS  PubMed  Google Scholar 

  39. Choudhry S, Bagga A, Hari P, Sharma S, Kalaivani M, Dinda A (2009) Efficacy and safety of tacrolimus versus cyclosporine in children with steroid-resistant nephrotic syndrome: a randomized controlled trial. Am J Kidney Dis 53:760–769

    Article  CAS  PubMed  Google Scholar 

  40. Gellermann J, Weber L, Pape L, Tönshoff B, Hoyer P, Querfeld U (2013) Mycophenolate mofetil versus cyclosporin A in children with frequently relapsing nephrotic syndrome. J Am Soc Nephrol 24:1689–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dorresteijn EM, Kist-van Holthe JE, Levtchenko EN, Nauta J, Hop WC, van der Heijden AJ (2008) Mycophenolate mofetil versus cyclosporine for remission maintenance in nephrotic syndrome. Pediatr Nephrol 23:2013–2020

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mathew G, Sinha A, Ahmed A, Grewal N, Khandelwal P, Hari P, Bagga A (2022) Efficacy of rituximab versus tacrolimus in difficult-to-treat steroid-sensitive nephrotic syndrome: an open-label pilot randomized controlled trial. Pediatr Nephrol 37:3117–3126

    Article  PubMed  PubMed Central  Google Scholar 

  43. Basu B, Sander A, Roy B, Preussler S, Barua S, Mahapatra T, Schaefer F (2018) Efficacy of rituximab vs tacrolimus in pediatric corticosteroid-dependent nephrotic syndrome: a randomized clinical trial. JAMA Pediatr 172:757–764

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ingulli E, Tejani A (1992) Severe hypercholesterolemia inhibits cyclosporin A efficacy in a dose-dependent manner in children with nephrotic syndrome. J Am Soc Nephrol 3:254–259

    Article  CAS  PubMed  Google Scholar 

  45. Ishikura K, Yoshikawa N, Hattori S, Sasaki S, Iijima K, Nakanishi K, Matsuyama T, Yata N, Ando T, Honda M (2010) Treatment with microemulsified cyclosporine in children with frequently relapsing nephrotic syndrome. Nephrol Dial Transplant 25:3956–3962

    Article  CAS  PubMed  Google Scholar 

  46. Filler G (2005) How should microemulsified Cyclosporine A (Neoral®) therapy in patients with nephrotic syndrome be monitored? Nephrol Dial Transplant 20:1032–1034

    Article  CAS  PubMed  Google Scholar 

  47. David-Neto E, Araujo LP, Feres Alves C, Sumita N, Romano P, Yagyu EM, Nahas WC, Ianhez LE (2002) A strategy to calculate cyclosporin A area under the time–concentration curve in pediatric renal transplantation. Pediatr Transplant 6:313–318

    Article  CAS  PubMed  Google Scholar 

  48. Nozu K, Iijima K, Sakaeda T, Okumura K, Nakanishi K, Yoshikawa N, Honda M, Ikeda M, Matsuo M (2005) Cyclosporin A absorption profiles in children with nephrotic syndrome. Pediatr Nephrol 20:910–913

    Article  PubMed  Google Scholar 

  49. Nishino T, Takahashi K, Tomori S, Ono S, Mimaki M (2022) Cyclosporine A C1. 5 monitoring reflects the area under the curve in children with nephrotic syndrome: a single-center experience. Clin Exp Nephrol 26:154–161

    Article  CAS  PubMed  Google Scholar 

  50. Fanta S, Backman JT, Seikku P, Holmberg C, Hoppu K (2005) Cyclosporine A monitoring–how to account for twice and three times daily dosing. Pediatr Nephrol 20:591–596

    Article  PubMed  Google Scholar 

  51. Filler G, De Barros VR, Jagger JE, Christians U (2006) Cyclosporin twice or three times daily dosing in pediatric transplant patients–it is not the same! Pediatr Transplant 10:953–956

    Article  CAS  PubMed  Google Scholar 

  52. Kengne S-W, Massella L, Diomedi F-C, Gianviti A, Vivarelli M, Greco M, Rita GS, Emma F (2009) Risk factors for cyclosporin A nephrotoxicity in children with steroid-dependant nephrotic syndrome. Clin J Am Soc Nephrol 4:1409–1416

    Article  PubMed Central  Google Scholar 

  53. Medeiros M, Valverde S, Del Moral I, Velásquez-Jones L, Hernández AM, Castañeda-Hernández G, Reyes H, Filler G (2016) Are tacrolimus pharmacokinetics affected by nephrotic stage? Ther Drug Monit 38:288–292

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Mao J, Chen J, Fu H, Shen H, Zhu X, Liu A, Shu Q, Du L (2016) Evaluation of mycophenolate mofetil or tacrolimus in children with steroid sensitive but frequently relapsing or steroid-dependent nephrotic syndrome. Nephrology (Carlton) 21:21–27

    Article  CAS  PubMed  Google Scholar 

  55. Gao P, Guan X-L, Huang R, Shang-Guan X-F, Luan J-W, Liu M-C, Xu H, Wang X-W (2020) Risk factors and clinical characteristics of tacrolimus-induced acute nephrotoxicity in children with nephrotic syndrome: a retrospective case-control study. Eur J Clin Pharmacol 76:277–284

    Article  CAS  PubMed  Google Scholar 

  56. Chen H-X, Cheng Q, Li F, He Q-N, Cao Y, Yi Z-W, Wu X-C (2020) Efficacy and safety of tacrolimus and low-dose prednisone in Chinese children with steroid-resistant nephrotic syndrome. World J Pediatr 16:159–167

    Article  CAS  PubMed  Google Scholar 

  57. Rojas AM, Hesselink DA, van Besouw NM, Dieterich M, de Kuiper R, Baan CC, van Gelder T (2022) High tacrolimus intrapatient variability and subtherapeutic immunosuppression are associated with adverse kidney transplant outcomes. Ther Drug Monit 44:369

    Article  Google Scholar 

  58. Filler G, Feber J, Lepage N, Weiler G, Mai I (2002) Universal approach to pharmacokinetic monitoring of immunosuppressive agents in children. Pediatr Transplant 6:411–418

    Article  CAS  PubMed  Google Scholar 

  59. Lemahieu W, Maes B, Verbeke K, Rutgeerts P, Geboes K, Vanrenterghem Y (2005) Cytochrome P450 3A4 and P-glycoprotein activity and assimilation of tacrolimus in transplant patients with persistent diarrhea. Am J Transplant 5:1383–1391

    Article  CAS  PubMed  Google Scholar 

  60. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, Wang D, Vinks AA, He Y, Swen JJ (2015) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther 98:19–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thervet E, Loriot M, Barbier S, Buchler M, Ficheux M, Choukroun G, Toupance O, Touchard G, Alberti C, Le Pogamp P, Moulin B, Le Meur Y, Heng AE, Subra JF, Beaune P, Legendre C (2010) Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther 87:721–726

    CAS  PubMed  Google Scholar 

  62. Nishimura T, Uemura O, Hibino S, Tanaka K, Kitagata R, Yuzawa S, Kasagi T, Fujita N (2022) Serum albumin level is associated with mycophenolic acid concentration in children with idiopathic nephrotic syndrome. Eur J Pediatr 181:1159–1165

    Article  CAS  PubMed  Google Scholar 

  63. de Winter BC, van Gelder T, Sombogaard F, Shaw LM, van Hest RM, Mathot RA (2009) Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients. J Pharmacokinet Pharmcodyn 36:541–564

    Article  CAS  Google Scholar 

  64. Sobiak J, Resztak M, Ostalska-Nowicka D, Zachwieja J, Gąsiorowska K, Piechanowska W, Chrzanowska M (2015) Monitoring of mycophenolate mofetil metabolites in children with nephrotic syndrome and the proposed novel target values of pharmacokinetic parameters. Eur J Pharm Sci 77:189–196

    Article  CAS  PubMed  Google Scholar 

  65. Weber LT, Shipkova M, Armstrong VW, Wagner N, Schütz E, Mehls O, Zimmerhackl LB, Oellerich M, Tönshoff B (2002) The pharmacokinetic-pharmacodynamic relationship for total and free mycophenolic acid in pediatric renal transplant recipients: a report of the German study group on mycophenolate mofetil therapy. J Am Soc Nephrol 13:759–768

    Article  PubMed  Google Scholar 

  66. Chan E, Yap D, Colucci M, Ma AL-t, Parekh R, Tullus K (2022) Use of rituximab in childhood idiopathic nephrotic syndrome. Clin J Am Soc Nephrol 18:533–548. https://doi.org/10.2215/CJN.08570722

  67. Chen Y, Shen Q, Dong M, Xiong Y, Xu H, Li Z (2021) Population pharmacokinetics of rituximab in pediatric patients with frequent-relapsing or steroid-dependent nephrotic syndrome. Front Pharmacol 12:725665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bertrand Q, Mignot S, Kwon T, Couderc A, Maisin A, Cambier A, Baudouin V, Peyneau M, Deschênes G, Hogan J (2022) Anti-rituximab antibodies in pediatric steroid-dependent nephrotic syndrome. Pediatr Nephrol 37:357–365

    Article  PubMed  Google Scholar 

  69. Barth MJ, Goldman S, Smith L, Perkins S, Shiramizu B, Gross TG, Harrison L, Sanger W, Geyer MB, Giulino-Roth L (2013) Rituximab pharmacokinetics in children and adolescents with de novo intermediate and advanced mature B-cell lymphoma/leukaemia: a children’s oncology group report. Br J Haematol 162:678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stahl K, Duong M, Schwarz A, Wagner A, Haller H, Schiffer M, Jacobs R (2017) Kinetics of rituximab excretion into urine and peritoneal fluid in two patients with nephrotic syndrome. Case Rep Nephrol 2017:1372859. https://doi.org/10.1155/2017/1372859

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chan EY, Ma AL, Tullus K (2022) Hypogammaglobulinaemia following rituximab therapy in childhood nephrotic syndrome. Pediatr Nephrol 37:927–931. https://doi.org/10.1007/s00467-021-05345-9

    Article  PubMed  Google Scholar 

  72. Filler G, Medeiros M, Díaz-González de Ferris ME (2020) Appreciating the impact of tacrolimus sampling time deviations in pediatric patients with nephrotic syndrome. Ther Drug Monit 42:354–356

    Article  PubMed  Google Scholar 

  73. Satoh S, Tada H, Murakami M, Tsuchiya N, Li Z, Numakura K, Saito M, Inoue T, Miura M, Hayase Y (2006) Circadian pharmacokinetics of mycophenolic acid and implication of genetic polymorphisms for early clinical events in renal transplant recipients. Transplantation 82:486–493

    Article  CAS  PubMed  Google Scholar 

  74. Baraldo M, Furlanut M (2006) Chronopharmacokinetics of ciclosporin and tacrolimus. Clin Pharmacokinet 45:775–788

    Article  CAS  PubMed  Google Scholar 

  75. Metz DK, Holford N, Kausman JY, Walker A, Cranswick N, Staatz CE, Barraclough KA, Ierino F (2014) Optimizing mycophenolic acid exposure in kidney transplant recipients: time for target concentration intervention. Transplantation 103:2012–2030

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Yu-hin Chan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Answers

1. c; 2. e; 3. c; 4. b; 5. b.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, F.Fy., Chan, E.Yh., Tullus, K. et al. Therapeutic drug monitoring in childhood idiopathic nephrotic syndrome: a state of the art review. Pediatr Nephrol 39, 85–103 (2024). https://doi.org/10.1007/s00467-023-05974-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-05974-2

Keywords

Navigation