Skip to main content

Advertisement

Log in

Therapeutic drug monitoring in pediatric renal transplantation

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Finding the balance between clinical efficacy and toxicity of immunosuppressive drugs is a challenge in renal transplantation (RTx), but especially in pediatric RTx patients. Due to the expected longer life-span of pediatric transplant patients and the long-term consequences of drug-induced infectious, malignant and cardiovascular adverse effects, protocols which minimize immunosuppressive therapy make conceptual sense. In this context, therapeutic drug monitoring is a tool which provides support for the individualization of therapy. It has, however, limitations, and specific data in the pediatric cohort are comparatively sparse. There is large heterogeneity among the studies conducted to date in terms of methods, follow-up, endpoints, immunosuppressive regimens and patients. In addition, data from adult studies are not readily transferrable to the pediatric situation. This educational review gives a concise overview on aspects of therapeutic drug monitoring in pediatric RTx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Soldin OP, Soldin SJ (2002) Review: therapeutic drug monitoring in pediatrics. Ther Drug Monit 24:1–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Sarwal M, Pascual J (2007) Immunosuppression minimization in pediatric transplantation. Am J Transplant 7:2227–2235

    Article  CAS  PubMed  Google Scholar 

  3. Ensom MH, Chang TK, Patel P (2001) Pharmacogenetics: the therapeutic drug monitoring of the future? Clin Pharmacokinet 40:783–802

    Article  CAS  PubMed  Google Scholar 

  4. Mabasa VH, Ensom MHH (2005) The role of therapeutic monitoring of everolimus in solid organ transplantation. Ther Drug Monit 27:666–676

    Article  CAS  PubMed  Google Scholar 

  5. Weber LT (2007) Verbesserung der arzneimittelsicherheit durch therapiemonitoring am beispiel der immunsuppressiva in der pädiatrischen nephrologie. Monatsschr Kinderheilkd 155:724–732

    Article  Google Scholar 

  6. Weber LT, Shipkova M, Lamersdorf T, Niedmann PD, Wiesel M, Mandelbaum A, Zimmerhackl LB, Schütz E, Mehls O, Oellerich M, Armstrong VW, Tönshoff B (1998) Pharmacokinetics of mycophenolic acid (MPA) and determinants of MPA free fraction in pediatric and adult renal transplant recipients. German study group on mycophenolate mofetil therapy in pediatric renal transplant recipients. J Am Soc Nephrol 9:1511–1520

    CAS  PubMed  Google Scholar 

  7. Weber LT, Armstrong VW, Shipkova M, Feneberg R, Wiesel M, Mehls O, Zimmerhackl LB, Oellerich M, Tönshoff B, Members of the German Study Group on Pediatric Renal Transplantation (2004) Cyclosporin A absorption profiles in pediatric renal transplant recipients predict the risk of acute rejection. Ther Drug Monit 26:415–424

    Article  CAS  PubMed  Google Scholar 

  8. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167

    Article  CAS  PubMed  Google Scholar 

  9. Liu J, Farmer JJ, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815

    Article  CAS  PubMed  Google Scholar 

  10. Kovarik JM, Mueller EA, van Bree JB, Arns W, Renner E, Kutz K (1994) Cyclosporine pharmacokinetics and variability from a microemulsion formulation—a multicenter investigation in kidney transplant patients. Transplantation 58:658–663

    Article  CAS  PubMed  Google Scholar 

  11. Hoyer PF (1998) Cyclosporin A (Neoral) in pediatric organ transplantation. Pediatr Transplant 2:35–39

    CAS  PubMed  Google Scholar 

  12. Bökenkamp A, Offner G, Hoyer PF, Vester U, Wonigeit K, Brodehl J (1995) Improved absorption of cyclosporine A from a new microemulsion formulation: implications for dosing and monitoring. Pediatr Nephrol 9:196–198

    Article  PubMed  Google Scholar 

  13. Hoyer PF (2000) Therapeutic drug monitoring of cyclosporin A: should we use the area under the concentration-time curve and forget about trough levels? Pediatr Transplant 4:2–5

    Article  CAS  PubMed  Google Scholar 

  14. Thervet E, Legendre C, Beaune P, Anglicheau D (2005) Cytochrome P450 3A polymorphisms and immunosuppressive drugs. Pharmacogenomics 6:1–11

    Article  Google Scholar 

  15. Von Ahsen N, Richter M, Grupp C, Ringe B, Oellerich M, Armstrong VW (2001) No influence of the MDR-I C3435T polymorphism or a CYP3A4 promotor polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporine A trough concentrations or rejection incidence in stable renal transplant recipients. Clin Chem 47:1048–1052

    Google Scholar 

  16. Yates CR, Zhang W, Song P, Li S, Gaber AO, Kotb M, Honaker MR, Alloway RR, Meibohm B (2003) The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J Clin Pharmacol 43:555–564

    Article  CAS  PubMed  Google Scholar 

  17. Weber LT, Höcker B, Armstrong VW, Oellerich M, Mehls O, Tönshoff B, The German study group on Pediatric RTx (2002) Is there an influence of MDR-I C3435T-polymorphism or CYP3A4 polymorphism on the pharmacokinetics of Cyclosporin A (CyA) in pediatric renal transplant recipients (Rtx)? Pediatr Nephrol 17:C27–C148, P263

    Google Scholar 

  18. Kahan BD, Welsh M, Schoenberg L, Rutzky LP, Katz SM, Urbauer DL, Van Buren CT (1996) Variable oral absorption of cyclosporine. A biopharmaceutical risk factor for chronic renal allograft rejection. Transplantation 62:599–606

    Article  CAS  PubMed  Google Scholar 

  19. Lindholm A, Kahan BD (1993) Influence of cyclosporine pharmacokinetics, trough concentrations, and AUC monitoring on outcome after kidney transplantation. Clin Pharmacol Ther 54:205–218

    Article  CAS  PubMed  Google Scholar 

  20. Amante AJ, Kahan BD (1996) Abbreviated area-under-the-curve strategy for monitoring cyclosporine microemulsion therapy in immediate posttransplant period. Clin Chem 42:1294–1296

    CAS  PubMed  Google Scholar 

  21. Halloran PF, Helms LM, Kung L, Noujaim J (1999) The temporal profile of calcineurin inhibition by cyclosporine in vivo. Transplantation 68:1356–1361

    Article  CAS  PubMed  Google Scholar 

  22. Mahalati K, Belitsky P, Sketris I, West K, Panek R (1999) Neoral monitoring by simplified sparse sampling area under the concentration-time curve. Transplantation 68:55–62

    Article  CAS  PubMed  Google Scholar 

  23. Cole E, Maham N, Cardella C, Cattran D, Fenton S, Hamel J, O´Grady C, Smith R (2003) Clinical benefits of neoral C2 monitoring in the long-term management of renal transplant recipients. Transplantation 75:2086–2090

    Article  PubMed  Google Scholar 

  24. Einecke G, Schütz M, Mai I, Fritsche L, Giessing M, Glander P, Neumayer HH, Budde K (2005) Limitations of C2 monitoring in renal transplant recipients. Nephrol Dial Transplant 20:1463–1470

    Article  CAS  PubMed  Google Scholar 

  25. Kyllönen LE, Salmela KT (2006) Early cyclosporine C0 and C2 monitoring in de novo kidney transplant patients: a prospective randomized single-center pilot study. Transplantation 81:1010–1015

    Article  PubMed  Google Scholar 

  26. Pape L, Ehrich JH, Offner G (2004) Advantages of cyclosporin A using 2-h levels in pediatric kidney transplantation. Pediatr Nephrol 19:1035–1038

    Article  PubMed  Google Scholar 

  27. North American Pediatric Renal Trials Collaborative Studies (2010) NAPRTCS 2010 Annual Report. Available from https://web.emmes.com/study/ped/annlrept/annlrept.html

  28. Kidney Disease: Improving Global Outcomes. Transplant Work Group (2009) KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant Suppl 3:S1–S157

    Google Scholar 

  29. Schiff J, Cole E, Cantarovich M (2007) Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin J Am Soc Nephrol 2:374–384

    Article  CAS  PubMed  Google Scholar 

  30. Lee MN, Butani L (2007) Improved pharmacokinetic monitoring of tacrolimus exposure after pediatric renal transplantation. Pediatr Transplant 11:388–393

    Article  CAS  PubMed  Google Scholar 

  31. Scott LJ, McKeage K, Keam SJ, Plosker GL (2003) Tacrolimus: a further update of its use in the management of organ transplantation. Drugs 63:1247–1297

    Article  CAS  PubMed  Google Scholar 

  32. Zhao W, Fakhoury M, Baudouin V, Maisin A, Deschênes G, Jacqz-Aigrain E (2011) Limited sampling strategy for estimating individual exposure of tacrolimus in pediatric kidney transplant patients. Ther Drug Monit 33:681–687

    Article  CAS  PubMed  Google Scholar 

  33. Filler G, Feber J, Lepage N, Weiler G, Mai I (2002) Universal approach to pharmacokinetic monitoring of immunosuppressive agents in children. Pediatr Transplant 6:411–418

    Article  CAS  PubMed  Google Scholar 

  34. Webb NJ, Roberts D, Preziosi R, Keevil BG (2005) Fingerprick blood samples can be used to accurately measure tacrolimus levels by tandem mass spectrometry. Pediatr Transplant 9:729–733

    Article  CAS  PubMed  Google Scholar 

  35. Kim JS, Aviles DH, Silverstein DM, Leblanc PL, MattiVehaskari V (2005) Effect of age, ethnicity, and glucocorticoid use on tacrolimus pharmacokinetics in pediatric renal transplant patients. Pediatr Transplant 9:162–169

    Article  CAS  PubMed  Google Scholar 

  36. Machida M, Takahara S, Ishibashi M, Hayashi M, Sekihara T, Yamanaka H (1991) Effect of temperature and hematocrit on plasma concentrations of FK 506. Transplant Proc 23:2753–2754

    CAS  PubMed  Google Scholar 

  37. Filler G, Womiloju T, Feber J, Lepage N, Christians U (2005) Adding sirolimus to tacrolimus-based immunosuppression in pediatric renal transplant recipients reduces tacrolimus exposure. Am J Transplant 5:2005–2010

    Article  CAS  PubMed  Google Scholar 

  38. Allison AC, Eugui EM (2005) Mechanisms of action of mycophenolatemofetil in preventing acute and chronic allograft rejection. Transplantation 80:S181–S190

    Article  CAS  PubMed  Google Scholar 

  39. Weber LT, Shipkova M, Armstrong VW, Wagner N, Schütz E, Mehls O, Zimmerhackl LB, Oellerich M, Tönshoff B (2002) The pharmacokinetic-pharmacodynamic relationship for total and free mycophenolic acid in pediatric renal transplant recipients: a report of the German study group on mycophenolatemofetil therapy. J Am Soc Nephrol 13:759–768

    Article  PubMed  Google Scholar 

  40. Le Meur Y, Büchler M, Thierry A, Caillard S, Villemain F, Lavaud S, Etienne I, Westeel PF, Hurault de Ligny B, Rostaing L, Thervet E, Szelag JC, Rérolle JP, Rousseau A, Touchard G, Marquet P (2007) Individualized mycophenolatemofetil dosing based on drug exposure significantly improves patient outcome after renal transplantation. Am J Transplant 7:2496–2503

    Article  PubMed  Google Scholar 

  41. Tönshoff B, David-Neto E, Ettenger R, Filler G, van Gelder T, Goebel J, Kuypers DRJ, Tsai E, Vinks AA, Weber LT, Zimmerhackl LB (2011) Pediatric aspects of therapeutic drug monitoring of mycophenolic acid in renal transplantation. Transplant Rev 25:78–89

    Article  Google Scholar 

  42. Weber LT, Lamersdorf T, Shipkova M, Niedmann PD, Wiesel M, Zimmerhackl LB, Staskewitz A, Schütz E, Mehls O, Oellerich M, Armstrong VW, Tönshoff B, Members of the German Study Group on Mycophenolate Mofetil Therapy in Pediatric Renal Transplant Recipients (1999) Area under the plasma concentration-time curve for total, but not for free, mycophenolic acid increases in the stable phase after renal transplantation: A longitudinal study in pediatric patients. Ther Drug Monit 21:498–506

    Article  CAS  PubMed  Google Scholar 

  43. Weber LT, Shipkova M, Armstrong VW, Wagner N, Schütz E, Mehls O, Zimmerhackl LB, Oellerich M, Tönshoff B (2002) Comparison of the EMIT immunoassay with HPLC for therapeutic drug monitoring of mycophenolic acid in pediatric renal transplant recipients on mycophenolatemofetil therapy. Clin Chem 48:517–525

    CAS  PubMed  Google Scholar 

  44. Meneses Rde P, Kotsifas CH (2009) Benefits of conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in pediatric renal transplant patients with stable graft function. Pediatr Transplant 13:188–193

    Article  PubMed  Google Scholar 

  45. Pape L, Ahlenstiel T, Kreuzer M, Ehrich JH (2008) Improved gastrointestinal symptom burden after conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in kidney transplanted children. Pediatr Transplant 12:640–642

    Article  CAS  PubMed  Google Scholar 

  46. Bullingham R, Monroe S, Nicholls A, Hale M (1996) Pharmacokinetics and bioavailability of mycophenolate mofetil in healthy subjects after single-dose oral and intravenous administration. J Clin Pharmacol 36:315–324

    Article  CAS  PubMed  Google Scholar 

  47. Oellerich M, Armstrong VW, Streit F, Weber L, Tönshoff B (2004) Immunosuppressive drug monitoring of sirolimus and cyclosporine in pediatric patients. Clin Biochem 37:424–428

    Article  CAS  PubMed  Google Scholar 

  48. Schachter AD, Benfield MR, Wyatt RJ, Grimm PC, Fennell RS, Herrin JT, Lirenman DS, McDonald RA, Munoz-Arizpe R, Harmon WE (2006) Sirolimus pharmacokinetics in pediatric renal transplant recipients receiving calcineurin inhibitor co-therapy. Pediatr Transplant 10:914–919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Ettenger RB, Grimm EM (2001) Safety and efficacy of TOR inhibitors in pediatric renal transplant recipients. Am J Kidney Dis 38:S22–S28

    Article  CAS  PubMed  Google Scholar 

  50. Sindhi R, Seward J, Mazariegos G, Soltys K, Seward L, Smith A, Kosmach B, Venkataramanan R (2005) Replacing calcineurin inhibitors with mTOR inhibitors in children. Pediatr Transplant 9:391–397

    Article  CAS  PubMed  Google Scholar 

  51. Filler G (2007) Optimization of immunosuppressive drug monitoring in children. Transplant Proc 39:1241–1243

    Article  CAS  PubMed  Google Scholar 

  52. Kovarik JM, Kahan BD, Kaplan B, Lorber M, Winkler M, Rouilly M, Gerbeau C, Cambon N, Boger R, Rordorf C, Everolimus Phase 2 Study Group (2001) Longitudinal assessment of everolimus in de novo renal transplant recipients over the first posttransplant year: pharmacokinetics, exposure-response relationships, and influence on cyclosporine. Clin Pharmacol Ther 69:48–56

    Article  CAS  PubMed  Google Scholar 

  53. McMahon L, Luo S, Hayes M, Tse FL (2000) High throughput analysis of everolimus and cyclosporin A in whole blood by liquid chromatography/mass spectrometry using a semi-automated 96-well solid-phase extraction system. Rapid Commun Mass Spectrom 14:1965–1971

    Article  CAS  PubMed  Google Scholar 

  54. Hoyer PF, Ettenger R, Kovarik JM, Webb NJ, Lemire J, Mentser M, Mahan J, Loirat C, Niaudet P, VanDamme-Lombaerts R, Offner G, Wehr S, Moeller V, Mayer H, Everolimus Pediatric Study Group (2003) Everolimus in pediatric de novo renal transplant patients. Transplantation 75:2082–2085

    Article  PubMed  Google Scholar 

  55. Kirchner GI, Meier-Wiedenbach I, Manns MP (2004) Clinical pharmacokinetics of everolimus. Clin Pharmacokinet 43:83–95

    Article  CAS  PubMed  Google Scholar 

  56. Baldelli S, Murgia S, Merlini S, Zenoni S, Perico N, Remuzzi G, Cattaneo D (2005) High-performance liquid chromatography with ultraviolet detection for therapeutic drug monitoring of everolimus. J Chromatogr B Anal Technol Biomed Life Sci 816:99–105

    Article  CAS  Google Scholar 

  57. Deters M, Kirchner G, Resch K, Kaever V (2002) Simultaneous quantification of sirolimus, everolimus, tacrolimus and cyclosporine by liquid-chromatography mass spectrometry (LC-MS). Clin Chem Lab Med 40:285–292

    Article  CAS  PubMed  Google Scholar 

  58. Weber LT, Tönshoff B (2013) Therapeutisches Drug-Monitoring nach Nierentransplantation (NTx). In: Tönshoff B, Pape L (eds) Kindesalter, Transplantations standards des Arbeitskreises “Nierentransplantation im Kindes- und Jugendalter” der Gesellschaftfür Pädiatrische Nephrologie (GPN). Shaker Verlag, Herzogenrath, pp 24–33

  59. Trompeter R, Fitzpatrick M, Hutchinson C, Johnston A (2003) Longitudinal evaluation of the pharmacokinetics of cyclosporinmicroemulsion (Neoral) in pediatric renal transplant recipients and assessment of C2 level as a marker for absorption. Pediatr Transplant 7:282–288

    Article  CAS  PubMed  Google Scholar 

  60. Vester U, Kranz B, Offner G, Nadalin S, Paul A, Broelsch CE, Hoyer PE (2004) Absorption phase cyclosporine (C(2 h)) monitoring in the first weeks after pediatric renal transplantation. Pediatr Nephrol 19:1273–1277

    Article  PubMed  Google Scholar 

  61. Nashan B, Armstrong VW, Budde K, Fricke L, Heemann U, Lück R, Röthele E, Scheuermann EH, Suwelack B (2003) Cyclosporin C2-Monitoring zur Optimierung der Immunsuppression nach Nierentransplantation—Empfehlungen anhand erster Erfahrungen in Deutschland. Tex Med 15:15–24

  62. Pape L, Lehnhardt A, Latta K, Ehrich JH, Offner G (2003) Cyclosporin A monitoring by 2-h levels: preliminary target levels in stable pediatric kidney transplant recipients. Clin Transpl 17:546–548

    Article  CAS  Google Scholar 

  63. John U, Ullrich S, Roskos M, Misselwitz J (2005) Two-hour postdose concentration: a reliable marker for cyclosporine exposure in adolescents with stable renal transplants. Transplant Proc 37:1608–1611

    Article  CAS  PubMed  Google Scholar 

  64. Einecke G, Mai I, Diekmann F, Fritsche L, Neumayer HH, Budde K (2002) Cyclosporine absorption rofiling and therapeutic drug monitoring using C(2) blood levels in stable renal allograft recipients. Transplant Proc 34:1738–1739

    Article  CAS  PubMed  Google Scholar 

  65. Wallemacq P, Armstrong VW, Brunet M, Haufroid V, Holt DW, Johnston A, Kuypers D, Le Meur Y, Marquet P, Oellerich M, Thervet E, Toenshoff B, Undre N, Weber LT, Westley IS, Mourad M (2009) Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference. Ther Drug Monit 31:139–152

    Article  CAS  PubMed  Google Scholar 

  66. Montini G, Ujka F, Varagnolo C, Ghio L, Ginevri F, Murer L, Thafam BS, Carasi C, Zacchello G, Plebani M (2006) The pharmacokinetics and immunosoppressive response of tacrolimus in paediatric renal transplant recipients. Pediatr Nephrol 21:719–724

    Article  PubMed  Google Scholar 

  67. Grenda R, Watson A, Trompeter R, Tönshoff B, Jaray J, Fitzpatrick M, Murer L, Vondrak K, Maxwell H, van Damme-Lombaerts R, Loirat C, Mor E, Cochat P, Milford DV, Brown M, Webb NJ (2010) A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. Am J Transplant 10:828–836

    Article  CAS  PubMed  Google Scholar 

  68. Ekberg H, Tedesco-Silva H, Demirbas A, Vitko S, Nashan B, Gürkan A, Margreiter R, Hugo C, Grinyó JM, Frei U, Vanrenterghem Y, Daloze P, Halloran PF (2007) Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 357:2562–2575

    Article  CAS  PubMed  Google Scholar 

  69. Claeys T, Van Dyck M, Van Damme-Lombaerts R (2010) Pharmacokinetics of tacrolimus in stable paediatric renal transplant recipients. Pediatr Nephrol 25:335–342

    Article  PubMed  Google Scholar 

  70. Weber LT, Hoecker B, Armstrong VW, Oellerich M, Tönshoff B (2006) Validation of an abbreviated pharmacokinetic profile for the estimation of mycophenolic acid exposure in pediatric renal transplant recipients. Ther Drug Monit 28:623–631

    Article  CAS  PubMed  Google Scholar 

  71. Kuypers DR, Le Meur Y, Cantarovich M, Tredger MJ, Tet SE, Cattaneo D, Tönshoff B, Holt DW, Chapman J, Gelder TV, Transplantation Society (TTS) Consensus Group on TDM of MPA (2010) Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. Clin J Am Soc Nephrol 5:341–358

    Article  CAS  PubMed  Google Scholar 

  72. Weber LT, Hoecker B, Armstrong VW, Oellerich M, Tönshoff B (2008) Long-term pharmacokinetics of mycophenolic acid in pediatric renal transplant recipients over 3 years posttransplant. Ther Drug Monit 30:570–575

    Article  CAS  PubMed  Google Scholar 

  73. Van Hest RM, Mathot RA, Vulto AG, Ijzermans JN, van Gelder T (2006) Within-patient variability of mycophenolic acid exposure: therapeutic drug monitoring from a clinical point of view. Ther Drug Monit 28:31–34

    Article  PubMed  Google Scholar 

  74. Filler G, Mai I (2000) Limited sampling strategy for mycophenolic acid area under the curve. Ther Drug Monit 22:169–173

    Article  CAS  PubMed  Google Scholar 

  75. Dunn CJ, Wagstaff AJ, Perry CM, Plosker GL, Goa KL (2001) Cyclosporin: an updated review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion-based formulation (Neoral) in organ transplantation. Drugs 61:1957–2016

    Article  CAS  PubMed  Google Scholar 

  76. Christiaans M, van Duijnhoven E, Beysens T, Undre N, Schafer A, van Hooff J (1998) Effect of breakfast on the oral bioavailability of tacrolimus and changes in pharmacokinetics at different times posttransplant in renal transplant recipients. Transplant Proc 30:1271–1273

    Article  CAS  PubMed  Google Scholar 

  77. Levy G, Thervet E, Lake J, Uchida K (2002) Patient management by NeoralC(2) monitoring: an international consensus statement. Transplantation 73[Suppl]:S12–S18

    Article  PubMed  Google Scholar 

  78. Prémaud A, Weber LT, Tönshoff B, Armstrong VW, Oellerich M, Urien S, Marquet P, Rousseau A (2011) Population pharmacokinetics of pediatric renal transplant patients using parametric and nonparametric approaches. Pharmacol Res 63:216–224

    Article  PubMed  Google Scholar 

  79. Wallemacq PE (2004) Therapeutic monitoring of immunosuppressant drugs. Where are we? Clin Chem Lab Med 42:1204–1211

    Article  CAS  PubMed  Google Scholar 

  80. Salm P, Warnholtz C, Boyd J, Arabshahi L, Marbach P, Taylor PJ (2006) Evaluation of a fluorescent polarization immunoassay for whole blood everolimus determination using samples from renal transplant recipients. Clin Biochem 39:732–738

    Article  CAS  PubMed  Google Scholar 

  81. Zochowska D, Bartlomiejczyk I, Kaminska A, Senatorski G, Paczek L (2006) High-performance liquid chromatography versus immunoassay for the measurement of sirolimus: comparison of two methods. Transplant Proc 38:78–80

    Article  CAS  PubMed  Google Scholar 

  82. Westley IA, Morris RG, Taylor PJ, Salm P, James MJ (2005) CEDIA® Sirolimus assay compared with HPLC.MS/MS and HPLC-UV in transplant recipient specimens. Ther Drug Monit 27:309–314

    Article  CAS  PubMed  Google Scholar 

  83. Stein CM, Murray JJ, Wood AJ (1999) Inhibition of stimulated interleukin-2 production in whole blood: a practical measure of cyclosporine effect. Clin Chem 45:1477–1484

    CAS  PubMed  Google Scholar 

  84. Hartel C, Fricke L, Schuhmacher N, Kirchner H, Muller-Steinhardt M (2002) Delayed cytokine mRNA expression kinetics after T-lymphocyte costimulation: a quantitative measure of the efficacy of cyclosporine A-based immunosuppression. Clin Chem 48:2225–2231

    CAS  PubMed  Google Scholar 

  85. Sommerer C, Konstandin M, Dengler T, Schmidt J, Meuer S, Zeier M, Giese T (2006) Pharmacodynamic monitoring of cyclosporine a in renal allograft recipients shows a quantitative relationship between immunosuppression and the occurrence of recurrent infections and malignancies. Transplantation 82:1280–1285

    Article  CAS  PubMed  Google Scholar 

  86. Billing H, Giese T, Sommerer C, Zeier M, Feneberg R, Meuer S, Tönshoff B (2010) Pharmacodynamic monitoring of cyclosporine A by NFAT-regulated gene expression and the relationship with infectious complications in pediatric renal transplant recipients. Pediatr Transplant 14:844–851

    Article  CAS  PubMed  Google Scholar 

  87. Fukuda T, Goebel J, Thogersen H, Maseck D, Cox S, Logan B, Sherbotie J, Seikaly M, Vinks AA (2011) Inosine monophosphate dehydrogenase (IMPDH) activity as a pharmacodynamic biomarker of mycophenolic acid effects in pediatric kidney transplant recipients. J Clin Pharmacol 51:309–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Glander P, Hambach P, Braun KP, Fritsche L, Giessing M, Mai I, Einecke G, Waiser J, Neumayer HH, Budde K (2004) Pre-transplant inosine monophosphate dehydrogenase activity is associated with clinical outcome after renal transplantation. Am J Transplant 4:2045–2051

    Article  CAS  PubMed  Google Scholar 

  89. Chiarelli LR, Molinaro M, Libetta C, Tinelli C, Cosmai L, Valentini G, Dal Canton A, Regazzi M (2010) Inosine monophosphate dehydrogenase variability in renal transplant patients on long-term mycophenolatemofetil therapy. Br J Clin Pharmacol 69:38–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Rother A, Glander P, Vitt E, Czock D, von Ahsen N, Armstrong VW, Oellerich M, Budde K, Feneberg R, Tönshoff B, Weber LT (2012) Inosine monophosphate dehydrogenase activity in paediatrics: age-related regulation and response to mycophenolic acid. Eur J Clin Pharmacol 68:913–922

    Article  CAS  PubMed  Google Scholar 

  91. Elens L, Bouamar R, Shuker N, Hesselink DA, van Gelder T, van Schaik RH (2014) Clinical implementation of pharmacogenetics in kidney transplantation: calcineurin inhibitors in the starting blocks. Br J Clin Pharmacol 77(4):715–728. doi:10.1111/bcp.12253

    Article  PubMed  Google Scholar 

  92. Fukuda T, Goebel J, Cox S, Maseck D, Zhang K, Sherbotie JR, Ellis EN, James LP, Ward RM, Vinks AA (2012) UGT1A9, UGT2B7, and MRP2 genotypes can predict mycophenolic acid pharmacokinetic variability in pediatric kidney transplant recipients. Ther Drug Monit 34:671–679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Ensom MHH, Davis GA, Cropp CD, Ensom RJ (1998) Clinical pharmacokinetics in the 21st century: does the evidence support definitive outcomes? Clin Pharmacokinet 34:265–279

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz T. Weber.

Additional information

Answers

1) C

2) A

3) D

4) E

5) B

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, L.T. Therapeutic drug monitoring in pediatric renal transplantation. Pediatr Nephrol 30, 253–265 (2015). https://doi.org/10.1007/s00467-014-2813-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-014-2813-8

Keywords

Navigation