Skip to main content
Log in

The use of diagnostic tools for pediatric AKI: applying the current evidence to the bedside

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Given the known deleterious consequences of acute kidney injury (AKI), exciting recent research efforts have focused on developing strategies for the earlier recognition of AKI in the pediatric population. Recognizing the limitations of serum creatinine, investigators have focused on the study of novel biomarkers and practical bedside tools for identifying patients at risk for AKI prior to a rise in serum creatinine. In PubMed, there are presently over 30 original research papers exploring the use of pediatric AKI risk prediction tools in just the last 2 years. The following review highlights the most recent advances in the literature regarding opportunities to refine our ability to detect AKI early. Importantly, this review discusses how prediction tools including novel urine and serum biomarkers, practical risk stratification tests, renal functional reserve, and electronic medical record alerts may ultimately be applied to routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jetton JG, Boohaker LJ, Sethi SK, Wazir S, Rohatgi S, Soranno DE, Chishti AS, Woroniecki R, Mammen C, Swanson JR, Sridhar S, Wong CS, Kupferman JC, Griffin RL, Askenazi DJ (2017) Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc Health 1:184–194

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL (2017) Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376:11–20

    Article  PubMed  Google Scholar 

  3. Fuhrman DY, Kane-Gill S, Goldstein SL, Priyanka P, Kellum JA (2018) Acute kidney injury epidemiology, risk factors, and outcomes in critically ill patients 16-25 years of age treated in an adult intensive care unit. Ann Intensive Care 8:26

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kidney Diseases Improving Global Outcomes (2012) KDIGO clinical practice guidelines for acute kidney injury. Kidney Int Suppl 2:1–138

    Google Scholar 

  5. Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD, Clermont G (2015) Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol 26:2231–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaddourah A, Basu RK, Goldstein SL, Sutherland SM (2019) Oliguria and acute kidney injury in critically ill children: implications for diagnosis and outcomes. Pediatr Crit Care Med 20:332–339

    Article  PubMed  Google Scholar 

  7. Shemesh O, Golbetz H, Kriss JP, Myers BD (1985) Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 28:830–838

    Article  CAS  PubMed  Google Scholar 

  8. Basu RK (2019) Targeting acute kidney injury: can an innovative approach to existing and novel biomarkers shift the paradigm? Nephron 143:207–210

    Article  PubMed  Google Scholar 

  9. Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, Krawczeski CD, Koyner JL, Murray P, Zappitelli M, Goldstein SL, Makris K, Ronco C, Martensson J, Martling CR, Venge P, Siew E, Ware LB, Ikizler TA, Mertens PR (2011) The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 57:1752–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fang F, Hu X, Dai X, Wang S, Bai Z, Chen J, Pan J, Li X, Wang J, Li Y (2018) Subclinical acute kidney injury is associated with adverse outcomes in critically ill neonates and children. Crit Care 22:256

    Article  PubMed  PubMed Central  Google Scholar 

  11. Albert C, Albert A, Kube J, Bellomo R, Wettersten N, Kuppe H, Westphal S, Haase M, Haase-Fielitz A (2018) Urinary biomarkers may provide prognostic information for subclinical acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg 155(2441–2452):e2413

    Google Scholar 

  12. Westhuyzen J, Endre ZH, Reece G, Reith DM, Saltissi D, Morgan TJ (2003) Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol Dial Transplant 18:543–551

    Article  CAS  PubMed  Google Scholar 

  13. Endre ZH, Kellum JA, Di Somma S, Doi K, Goldstein SL, Koyner JL, Macedo E, Mehta RL, Murray PT (2013) Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol 182:30–44

    Article  PubMed  Google Scholar 

  14. McCullough PA, Bouchard J, Waikar SS, Siew ED, Endre ZH, Goldstein SL, Koyner JL, Macedo E, Doi K, Di Somma S, Lewington A, Thadhani R, Chakravarthi R, Ice C, Okusa MD, Duranteau J, Doran P, Yang L, Jaber BL, Meehan S, Kellum JA, Haase M, Murray PT, Cruz D, Maisel A, Bagshaw SM, Chawla LS, Mehta RL, Shaw AD, Ronco C (2013) Implementation of novel biomarkers in the diagnosis, prognosis, and management of acute kidney injury: executive summary from the tenth consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol 182:5–12

    Article  PubMed  Google Scholar 

  15. Brzin J, Popovic T, Turk V, Borchart U, Machleidt W (1984) Human cystatin, a new protein inhibitor of cysteine proteinases. Biochem Biophys Res Commun 118:103–109

    Article  CAS  PubMed  Google Scholar 

  16. Nakhjavan-Shahraki B, Yousefifard M, Ataei N, Baikpour M, Ataei F, Bazargani B, Abbasi A, Ghelichkhani P, Javidilarijani F, Hosseini M (2017) Accuracy of cystatin C in prediction of acute kidney injury in children; serum or urine levels: which one works better? A systematic review and meta-analysis. BMC Nephrol 18:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Filho LT, Grande AJ, Colonetti T, Della ESP, da Rosa MI (2017) Accuracy of neutrophil gelatinase-associated lipocalin for acute kidney injury diagnosis in children: systematic review and meta-analysis. Pediatr Nephrol 32:1979–1988

    Article  PubMed  Google Scholar 

  18. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273:4135–4142

    Article  CAS  PubMed  Google Scholar 

  19. Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, Bonventre JV (2008) Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 73:863–869

    Article  CAS  PubMed  Google Scholar 

  20. Du Y, Zappitelli M, Mian A, Bennett M, Ma Q, Devarajan P, Mehta R, Goldstein SL (2011) Urinary biomarkers to detect acute kidney injury in the pediatric emergency center. Pediatr Nephrol 26:267–274

    Article  PubMed  Google Scholar 

  21. Emlet DR, Pastor-Soler N, Marciszyn A, Wen X, Gomez H, Humphries WH, Morrisroe S, Volpe JK, Kellum JA (2017) Insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinases-2: differential expression and secretion in human kidney tubule cells. Am J Physiol Renal Physiol 312:F284–F296

    Article  CAS  PubMed  Google Scholar 

  22. Meersch M, Schmidt C, Van Aken H, Rossaint J, Gorlich D, Stege D, Malec E, Januszewska K, Zarbock A (2014) Validation of cell-cycle arrest biomarkers for acute kidney injury after pediatric cardiac surgery. PLoS One 9:e110865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bongiovanni C, Magrini L, Salerno G, Gori CS, Cardelli P, Hur M, Buggi M, Di Somma S (2015) Serum cystatin C for the diagnosis of acute kidney injury in patients admitted in the emergency department. Dis Markers 2015:416059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hidayati EL, Utami MD, Rohsiswatmo R, Tridjaja B (2021) Cystatin C compared to serum creatinine as a marker of acute kidney injury in critically ill neonates. Pediatr Nephrol 36:181–186

    Article  PubMed  Google Scholar 

  25. Nishida M, Kubo S, Morishita Y, Nishikawa K, Ikeda K, Itoi T, Hosoi H (2019) Kidney injury biomarkers after cardiac angiography in children with congenital heart disease. Congenit Heart Dis 14:1087–1093

    Article  PubMed  Google Scholar 

  26. Yavuz S, Anarat A, Acarturk S, Dalay AC, Kesiktas E, Yavuz M, Acarturk TO (2014) Neutrophil gelatinase associated lipocalin as an indicator of acute kidney injury and inflammation in burned children. Burns 40:648–654

    Article  PubMed  Google Scholar 

  27. Kari JA, Shalaby MA, Sofyani K, Sanad AS, Ossra AF, Halabi RS, Aljuhani MH, Toffaha WM, Moria FA, Sabry S, Ahmed HA, Alhasan KA, Sharief S, Safdar O (2018) Urinary neutrophil gelatinase-associated lipocalin (NGAL) and serum cystatin C measurements for early diagnosis of acute kidney injury in children admitted to PICU. World J Pediatr 14:134–142

    Article  CAS  PubMed  Google Scholar 

  28. Krawczeski CD, Woo JG, Wang Y, Bennett MR, Ma Q, Devarajan P (2011) Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass. J Pediatr 158(1009–1015):e1001

    Google Scholar 

  29. McWilliam SJ, Antoine DJ, Jorgensen AL, Smyth RL, Pirmohamed M (2018) Urinary biomarkers of aminoglycoside-induced nephrotoxicity in cystic fibrosis: kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Sci Rep 8:5094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Soto K, Papoila AL, Coelho S, Bennett M, Ma Q, Rodrigues B, Fidalgo P, Frade F, Devarajan P (2013) Plasma NGAL for the diagnosis of AKI in patients admitted from the emergency department setting. Clin J Am Soc Nephrol 8:2053–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lukasz A, Beneke J, Menne J, Vetter F, Schmidt BM, Schiffer M, Haller H, Kumpers P, Kielstein JT (2014) Serum neutrophil gelatinase-associated lipocalin (NGAL) in patients with Shiga toxin mediated haemolytic uraemic syndrome (STEC-HUS). Thromb Haemost 111:365–372

    Article  CAS  PubMed  Google Scholar 

  32. Seeman T, Vondrak K, Dusek J, Simankova N, Zieg J, Hacek J, Chadimova M, Sopko B, Fortova M (2017) Urinary neutrophil gelatinase-associated lipocalin does not distinguish acute rejection from other causes of acute kidney injury in pediatric renal transplant recipients. Clin Lab 63:111–114

    Article  CAS  PubMed  Google Scholar 

  33. Hirsch R, Dent C, Pfriem H, Allen J, Beekman RH 3rd, Ma Q, Dastrala S, Bennett M, Mitsnefes M, Devarajan P (2007) NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol 22:2089–2095

    Article  PubMed  Google Scholar 

  34. Forster CS, Jackson E, Ma Q, Bennett M, Shah SS, Goldstein SL (2018) Predictive ability of NGAL in identifying urinary tract infection in children with neurogenic bladders. Pediatr Nephrol 33:1365–1374

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ren H, Zhou X, Dai D, Liu X, Wang L, Zhou Y, Luo X, Cai Q (2015) Assessment of urinary kidney injury molecule-1 and interleukin-18 in the early post-burn period to predict acute kidney injury for various degrees of burn injury. BMC Nephrol 16:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lee HE, Kim DK, Kang HK, Park K (2015) The diagnosis of febrile urinary tract infection in children may be facilitated by urinary biomarkers. Pediatr Nephrol 30:123–130

    Article  PubMed  Google Scholar 

  37. Basu RK, Wong HR, Krawczeski CD, Wheeler DS, Manning PB, Chawla LS, Devarajan P, Goldstein SL (2014) Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery. J Am Coll Cardiol 64:2753–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martensson J, Bellomo R (2015) What’s new in perioperative renal dysfunction? Intensive Care Med 41:514–516

    Article  PubMed  Google Scholar 

  39. Coll E, Botey A, Alvarez L, Poch E, Quinto L, Saurina A, Vera M, Piera C, Darnell A (2000) Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis 36:29–34

    Article  CAS  PubMed  Google Scholar 

  40. Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226

    Article  CAS  PubMed  Google Scholar 

  41. Koyner JL, Garg AX, Shlipak MG, Patel UD, Sint K, Hong K, Devarajan P, Edelstein CL, Zappitelli M, Thiessen-Philbrook H, Parikh CR; Translational Research Investigating Biomarker Endpoints in AKI (TRIBE AKI) Consortium (2013) Urinary cystatin C and acute kidney injury after cardiac surgery. Am J Kidney Dis 61:730–738

  42. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432

    Article  CAS  PubMed  Google Scholar 

  43. Cowland JB, Borregaard N (1997) Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 45:17–23

    Article  CAS  PubMed  Google Scholar 

  44. Hvidberg V, Jacobsen C, Strong RK, Cowland JB, Moestrup SK, Borregaard N (2005) The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett 579:773–777

    Article  CAS  PubMed  Google Scholar 

  45. Devarajan P (2020) The current state of the art in acute kidney injury. Front Pediatr 8:70

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dent CL, Ma Q, Dastrala S, Bennett M, Mitsnefes MM, Barasch J, Devarajan P (2007) Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care 11:R127

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, Parikh CR, Goldstein SL (2007) Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care 11:R84

    Article  PubMed  PubMed Central  Google Scholar 

  48. Parikh CR, Coca SG, Thiessen-Philbrook H, Shlipak MG, Koyner JL, Wang Z, Edelstein CL, Devarajan P, Patel UD, Zappitelli M, Krawczeski CD, Passik CS, Swaminathan M, Garg AX, TRIBE-AKI Consortium (2011) Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol 22:1748–1757

  49. Stanski N, Menon S, Goldstein SL, Basu RK (2019) Integration of urinary neutrophil gelatinase-associated lipocalin with serum creatinine delineates acute kidney injury phenotypes in critically ill children. J Crit Care 53:1–7

    Article  CAS  PubMed  Google Scholar 

  50. Koyner JL, Zarbock A, Basu RK, Ronco C (2020) The impact of biomarkers of acute kidney injury on individual patient care. Nephrol Dial Transplant 35:1295–1305

    Article  PubMed  Google Scholar 

  51. Krzeminska E, Wyczalkowska-Tomasik A, Korytowska N, Paczek L (2016) Comparison of two methods for determination of NGAL levels in urine: ELISA and CMIA. J Clin Lab Anal 30:956–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV (2002) Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62:237–244

    Article  CAS  PubMed  Google Scholar 

  53. Fazel M, Sarveazad A, Mohamed Ali K, Yousefifard M, Hosseini M (2020) Accuracy of urine kidney injury molecule-1 in predicting acute kidney injury in children; a systematic review and meta-analysis. Arch Acad Emerg Med 8:e44

    PubMed  PubMed Central  Google Scholar 

  54. Barnum KJ, O’Connell MJ (2014) Cell cycle regulation by checkpoints. Methods Mol Biol 1170:29–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kellum JA, Chawla LS (2016) Cell-cycle arrest and acute kidney injury: the light and the dark sides. Nephrol Dial Transplant 31:16–22

    Article  CAS  PubMed  Google Scholar 

  56. Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, Bihorac A, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Forni LG, Gong MN, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EA, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmele T, Shapiro NI, Shaw AD, Shi J, Sprague AM, Vincent JL, Vinsonneau C, Wagner L, Walker MG, Wilkerson RG, Zacharowski K, Kellum JA (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17:R25

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fuhrman DY, Kellum JA, Joyce EL, Miyashita Y, Mazariegos GV, Ganoza A, Squires JE (2020) The use of urinary biomarkers to predict acute kidney injury in children after liver transplant. Pediatr Transplant 24:e13608

    Article  PubMed  Google Scholar 

  58. Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, Zarbock A (2017) Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med 43:1551–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Noori NM, Sadeghi S, Shahramian I, Keshavarz K (2013) Urine beta 2-microglobolin in the patients with congenital heart disease. Int Cardiovasc Res J 7:62–66

    PubMed  PubMed Central  Google Scholar 

  60. Zheng J, Yao Y, Han L, Xiao Y (2013) Renal function and injury in infants and young children with congenital heart disease. Pediatr Nephrol 28:99–104

    Article  PubMed  Google Scholar 

  61. Agras PI, Derbent M, Ozcay F, Baskin E, Turkoglu S, Aldemir D, Tokel K, Saatci U (2005) Effect of congenital heart disease on renal function in childhood. Nephron Physiol 99:10–15

  62. Cooper DS, Claes D, Goldstein SL, Bennett MR, Ma Q, Devarajan P, Krawczeski CD (2016) Follow-up renal assessment of injury long-term after acute kidney injury (FRAIL-AKI). Clin J Am Soc Nephrol 11:21–29

    Article  CAS  PubMed  Google Scholar 

  63. Kaddourah A, Goldstein SL, Basu R, Nehus EJ, Terrell TC, Brunner L, Bennett MR, Haffner C, Jefferies JL (2016) Novel urinary tubular injury markers reveal an evidence of underlying kidney injury in children with reduced left ventricular systolic function: a pilot study. Pediatr Nephrol 31:1637–1645

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fuhrman DY, Nguyen L, Hindes M, Kellum JA (2019) Baseline tubular biomarkers in young adults with congenital heart disease as compared to healthy young adults: detecting subclinical kidney injury. Congenit Heart Dis 14:963–967

    Article  PubMed  PubMed Central  Google Scholar 

  65. Serafini-Cessi F, Malagolini N, Cavallone D (2003) Tamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis 42:658–676

    Article  CAS  PubMed  Google Scholar 

  66. Kumar S (2007) Mechanism of injury in uromodulin-associated kidney disease. J Am Soc Nephrol 18:10–12

    Article  PubMed  Google Scholar 

  67. Bennett MR, Pyles O, Ma Q, Devarajan P (2018) Preoperative levels of urinary uromodulin predict acute kidney injury after pediatric cardiopulmonary bypass surgery. Pediatr Nephrol 33:521–526

    Article  PubMed  Google Scholar 

  68. Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR, Chawla LS, Wheeler DS, Goldstein SL (2014) Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int 85:659–667

    Article  PubMed  Google Scholar 

  69. Basu RK, Kaddourah A, Goldstein SL, AWARE Study Investigators (2018) Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study. Lancet Child Adolesc Health 2:112–120

    Article  PubMed  PubMed Central  Google Scholar 

  70. Menon S, Goldstein SL, Mottes T, Fei L, Kaddourah A, Terrell T, Arnold P, Bennett MR, Basu RK (2016) Urinary biomarker incorporation into the renal angina index early in intensive care unit admission optimizes acute kidney injury prediction in critically ill children: a prospective cohort study. Nephrol Dial Transplant 31:586–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stanski NL, Stenson EK, Cvijanovich NZ, Weiss SL, Fitzgerald JC, Bigham MT, Jain PN, Schwarz A, Lutfi R, Nowak J, Allen GL, Thomas NJ, Grunwell JR, Baines T, Quasney M, Haileselassie B, Wong HR (2020) PERSEVERE biomarkers predict severe acute kidney injury and renal recovery in pediatric septic shock. Am J Respir Crit Care Med 201:848–855

    Article  PubMed  PubMed Central  Google Scholar 

  72. Baek SM, Brown RS, Shoemaker WC (1973) Early prediction of acute renal failure and recovery. II. Renal function response to furosemide. Ann Surg 178:605–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ronco C, Chawla LS (2016) Glomerular and tubular kidney stress test: new tools for a deeper evaluation of kidney function. Nephron 134:191–194

    Article  PubMed  Google Scholar 

  74. Chawla LS, Davison DL, Brasha-Mitchell E, Koyner JL, Arthur JM, Shaw AD, Tumlin JA, Trevino SA, Kimmel PL, Seneff MG (2013) Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care 17:R207

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen JJ, Chang CH, Huang YT, Kuo G (2020) Furosemide stress test as a predictive marker of acute kidney injury progression or renal replacement therapy: a systemic review and meta-analysis. Crit Care 24:202

    Article  PubMed  PubMed Central  Google Scholar 

  76. Matsuura R, Komaru Y, Miyamoto Y, Yoshida T, Yoshimoto K, Isshiki R, Mayumi K, Yamashita T, Hamasaki Y, Nangaku M, Noiri E, Morimura N, Doi K (2018) Response to different furosemide doses predicts AKI progression in ICU patients with elevated plasma NGAL levels. Ann Intensive Care 8:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Koyner JL, Davison DL, Brasha-Mitchell E, Chalikonda DM, Arthur JM, Shaw AD, Tumlin JA, Trevino SA, Bennett MR, Kimmel PL, Seneff MG, Chawla LS (2015) Furosemide stress test and biomarkers for the prediction of AKI severity. J Am Soc Nephrol 26:2023–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Penk J, Gist KM, Wald EL, Kitzmiller L, Webb TN, Li Y, Cooper DS, Goldstein SL, Basu RK (2019) Furosemide response predicts acute kidney injury in children after cardiac surgery. J Thorac Cardiovasc Surg 157:2444–2451

    Article  CAS  PubMed  Google Scholar 

  79. Borasino S, Wall KM, Crawford JH, Hock KM, Cleveland DC, Rahman F, Martin KD, Alten JA (2018) Furosemide response predicts acute kidney injury after cardiac surgery in infants and neonates. Pediatr Crit Care Med 19:310–317

    Article  PubMed  Google Scholar 

  80. Bosch JP, Saccaggi A, Lauer A, Ronco C, Belledonne M, Glabman S (1983) Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am J Med 75:943–950

    Article  CAS  PubMed  Google Scholar 

  81. Husain-Syed F, Ferrari F, Sharma A, Danesi TH, Bezerra P, Lopez-Giacoman S, Samoni S, de Cal M, Corradi V, Virzi GM, De Rosa S, Mucino Bermejo MJ, Estremadoyro C, Villa G, Zaragoza JJ, Caprara C, Brocca A, Birk HW, Walmrath HD, Seeger W, Nalesso F, Zanella M, Brendolan A, Giavarina D, Salvador L, Bellomo R, Rosner MH, Kellum JA, Ronco C (2018) Preoperative renal functional reserve predicts risk of acute kidney injury after cardiac operation. Ann Thorac Surg 105:1094–1101

    Article  PubMed  Google Scholar 

  82. Rodriguez-Iturbe B (1990) The renal response to an acute protein load in man: clinical perspective. Nephrol Dial Transplant 5:1–9

    Article  CAS  PubMed  Google Scholar 

  83. Molina E, Herrera J, Rodriguez-Iturbe B (1988) The renal functional reserve in health and renal disease in school age children. Kidney Int 34:809–816

    Article  CAS  PubMed  Google Scholar 

  84. Fuhrman DY, Maier PS, Schwartz GJ (2013) Rapid assessment of renal reserve in young adults by cystatin C. Scand J Clin Lab Invest 73:265–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rizk DV, Meier D, Sandoval RM, Chacana T, Reilly ES, Seegmiller JC, DeNoia E, Strickland JS, Muldoon J, Molitoris BA (2018) A novel method for rapid bedside measurement of GFR. J Am Soc Nephrol 29:1609–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jannot AS, Burgun A, Thervet E, Pallet N (2017) The diagnosis-wide landscape of hospital-acquired AKI. Clin J Am Soc Nephrol 12:874–884

    Article  PubMed  PubMed Central  Google Scholar 

  87. Saly D, Yang A, Triebwasser C, Oh J, Sun Q, Testani J, Parikh CR, Bia J, Biswas A, Stetson C, Chaisanguanthum K, Wilson FP (2017) Approaches to predicting outcomes in patients with acute kidney injury. PLoS One 12:e0169305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Al-Jaghbeer M, Dealmeida D, Bilderback A, Ambrosino R, Kellum JA (2018) Clinical decision support for in-hospital AKI. J Am Soc Nephrol 29:654–660

    Article  PubMed  Google Scholar 

  89. Wilson FP, Shashaty M, Testani J, Aqeel I, Borovskiy Y, Ellenberg SS, Feldman HI, Fernandez H, Gitelman Y, Lin J, Negoianu D, Parikh CR, Reese PP, Urbani R, Fuchs B (2015) Automated, electronic alerts for acute kidney injury: a single-blind, parallel-group, randomised controlled trial. Lancet 385:1966–1974

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sandokji I, Yamamoto Y, Biswas A, Arora T, Ugwuowo U, Simonov M, Saran I, Martin M, Testani JM, Mansour S, Moledina DG, Greenberg JH, Wilson FP (2020) A time-updated, parsimonious model to predict AKI in hospitalized children. J Am Soc Nephrol 31:1348–1357

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hoste EA, Kashani K, Gibney N, Wilson FP, Ronco C, Goldstein SL, Kellum JA, Bagshaw SM, 15 ADQI Consensus Group (2016) Impact of electronic-alerting of acute kidney injury: workgroup statements from the 15(th) ADQI Consensus Conference. Can J Kidney Health Dis 3:10

  92. Goldstein SL, Kirkendall E, Nguyen H, Schaffzin JK, Bucuvalas J, Bracke T, Seid M, Ashby M, Foertmeyer N, Brunner L, Lesko A, Barclay C, Lannon C, Muething S (2013) Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics 132:e756–e767

    Article  PubMed  Google Scholar 

  93. Goldstein SL, Dahale D, Kirkendall ES, Mottes T, Kaplan H, Muething S, Askenazi DJ, Henderson T, Dill L, Somers MJG, Kerr J, Gilarde J, Zaritsky J, Bica V, Brophy PD, Misurac J, Hackbarth R, Steinke J, Mooney J, Ogrin S, Chadha V, Warady B, Ogden R, Hoebing W, Symons J, Yonekawa K, Menon S, Abrams L, Sutherland S, Weng P, Zhang F, Walsh K (2020) A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int 97:580–588

    Article  CAS  PubMed  Google Scholar 

  94. Liu KD, Goldstein SL, Vijayan A, Parikh CR, Kashani K, Okusa MD, Agarwal A, Cerda J, on behalf of the AKI!Now Initiative of the American Society of Nephrology (2020) AKI!Now initiative: recommendations for awareness, recognition, and management of AKI. Clin J Am Soc Nephrol 15:1838–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ostermann M, Bellomo R, Burdmann EA, Doi K, Endre ZH, Goldstein SL, Kane-Gill SL, Liu KD, Prowle JR, Shaw AD, Srisawat N, Cheung M, Jadoul M, Winkelmayer WC, Kellum JA, Conference Participants (2020) Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney Int 98:294–309

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mehta RL, McDonald B, Gabbai F, Pahl M, Farkas A, Pascual MT, Zhuang S, Kaplan RM, Chertow GM (2002) Nephrology consultation in acute renal failure: does timing matter? Am J Med 113:456–461

    Article  PubMed  Google Scholar 

  97. Endre ZH (2017) The role of nephrologist in the intensive care unit. Blood Purif 43:78–81

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Fuhrman.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuhrman, D. The use of diagnostic tools for pediatric AKI: applying the current evidence to the bedside. Pediatr Nephrol 36, 3529–3537 (2021). https://doi.org/10.1007/s00467-021-04940-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-021-04940-0

Keywords

Navigation