Skip to main content

Advertisement

Log in

Revealing aeroelastic effects on low-rise roof structures in turbulent winds via isogeometric fluid–structure interaction

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Aeroelastic effects, which affect the dynamic responses of low-rise roof structures to extreme wind conditions, are often neglected or oversimplified in current wind engineering design standards and applications. However, it is crucial to understand the details of those aeroelastic effects for performance-based wind engineering. This paper presents an isogeometric fluid–structure interaction (FSI) tool to investigate the aeroelastic effects of wind pressure distributions on roof structures under different turbulent wind conditions. A representative low-rise roof structure is simulated with an FSI model using an Arbitrary Lagrange-Eulerian-based variational multi-scale formulation coupled with isogeometric Kirchhoff-Love shells. The simulation results are compared to the quasi-steady approach and wind load provisions from ASCE 7-22. It shows that the quasi-steady approach and the design standard underestimate the pressure fluctuations, indicating the necessity of using FSI simulations to capture the aeroelastic effect for the roof of low-rise structures. This paper also studies the impacts of different roof configurations, e.g., the number of roof panels and inflow turbulent intensity, on the distribution of pressure coefficients and roof deflections. For the given mean wind speed, the mean pressure coefficient remains almost the same regardless of the turbulent intensity and roof configuration. However, the pressure fluctuation (standard deviation) varies significantly with the turbulence intensity and roof configuration. The aeroelastic effect also leads to complicated roof deflections at the crucial location having the maximum pressure coefficient. The paper first describes the mathematical details of the FSI model and simulation setup. Then, the pressure coefficients by the FSI simulation and design code are compared. Finally, the roof deflection with different inlet turbulence intensities and roof configurations are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Paulotto C, Ciampoli M, Augusti G (2004) Some proposals for a first step towards a performance based wind engineering. IFED Int Forum Eng Decis Mak

  2. ASCE/SEI 7-22 (2022) Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers

  3. Wood JN, Breuer M, De Nayer G (2018) Experimental studies on the instantaneous fluid-structure interaction of an air-inflated flexible membrane in turbulent flow. J Fluids Struct 80:405–440

    Article  Google Scholar 

  4. Estephan J, Feng C, Chowdhury AG, Chavez M, Baskaran A, Moravej M (2021) Characterization of wind-induced pressure on membrane roofs based on full-scale wind tunnel testing. Eng Struct 235:112101

    Article  Google Scholar 

  5. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201

    Article  MathSciNet  MATH  Google Scholar 

  6. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  7. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Wiley, Toward Integration of CAD and FEA

    Book  MATH  Google Scholar 

  8. Hsu M-C, Bazilevs Y (2012) Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833

    Article  MATH  Google Scholar 

  9. Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid-structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174. https://doi.org/10.1016/j.compfluid.2016.03.008

    Article  MathSciNet  MATH  Google Scholar 

  10. Bazilevs Y, Korobenko A, Deng X, Yan J (2015) Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines. Int J Numer Methods Eng 102:766–783. https://doi.org/10.1002/nme.4738

    Article  MATH  Google Scholar 

  11. Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y (2013) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81:021011. https://doi.org/10.1115/1.4024415

    Article  Google Scholar 

  12. Benson D, Bazilevs Y, Hsu M, Hughes T (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200(13–16):1367–1378

    Article  MathSciNet  MATH  Google Scholar 

  13. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MathSciNet  MATH  Google Scholar 

  14. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44. https://doi.org/10.1016/S0065-2156(08)70153-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng 73:173–189

    Article  MathSciNet  MATH  Google Scholar 

  16. Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41

    Article  MathSciNet  MATH  Google Scholar 

  17. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027. https://doi.org/10.1016/j.cma.2004.09.014

    Article  MathSciNet  MATH  Google Scholar 

  18. Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900. https://doi.org/10.1002/fld.1430

    Article  MATH  Google Scholar 

  19. Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26

    Article  MathSciNet  MATH  Google Scholar 

  20. Cen H, Zhou Q, Korobenko A (2022) Wall-function-based weak imposition of Dirichlet boundary condition for stratified turbulent flows. Comput Fluids 234:105257

    Article  MathSciNet  MATH  Google Scholar 

  21. Herrema AJ, Johnson EL, Proserpio D, Wu MCH, Kiendl J, Hsu M-C (2019) Penalty coupling of non-matching isogeometric Kirchhoff-Love shell patches with application to composite wind turbine blades. Comput Methods Appl Mech Eng 346:810–840

    Article  MathSciNet  MATH  Google Scholar 

  22. Kamensky D, Xu F, Lee C, Yan J, Bazilevs Y, Hsu M (2018) A contact formulation based on a volumetric potential: application to isogeometric simulations of atrioventricular valves. Comput Methods Appl Mech Eng 330:522–546

    Article  MathSciNet  MATH  Google Scholar 

  23. Terahara T, Takizawa K, Tezduyar TE (2023) T-splines computational membrane-cable structural mechanics with continuity and smoothness: I. Method Implement Comput Mech 71:657–675. https://doi.org/10.1007/s00466-022-02256-w

    Article  MathSciNet  MATH  Google Scholar 

  24. Terahara T, Takizawa K, Avsar R, Tezduyar TE (2023) T-splines computational membrane-cable structural mechanics with continuity and smoothness: II. Spacecraft Parachutes Comput Mech 71:677–686. https://doi.org/10.1007/s00466-022-02265-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Taniguchi Y, Takizawa K, Otoguro Y, Tezduyar T (2022) A hyperelastic extended Kirchhoff-Love shell model with out-of-plane normal stress: I. Out-of-plane deformation. Comput Mech 70(2):247–280

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu Q, Zhu M, Yan J (2022) Isogeometric large-eddy simulations of turbulent particle-laden flows. Math Models Methods Appl Sci 32(12):2529–2550. https://doi.org/10.1142/S0218202522500609

    Article  MathSciNet  MATH  Google Scholar 

  27. Rajanna MR, Johnson EL, Liu N, Korobenko A, Bazilevs Y, Hsu M-C (2022) Fluid-structure interaction modeling with nonmatching interface discretizations for compressible flow problems: computational framework and validation study. Math Models Methods Appl Sci 32(12):2497–2528. https://doi.org/10.1142/S0218202522500592

    Article  MathSciNet  MATH  Google Scholar 

  28. Shende S, Behzadinasab M, Moutsandis G, Bazilevs Y (2022) Simulating air blast on concrete structures using the volumetric penalty coupling of isogeometric analysis and peridynamics. Math Models Methods Appl Sci 32(12):2477–2496. https://doi.org/10.1142/S0218202522500580

    Article  MathSciNet  MATH  Google Scholar 

  29. Kuraishi T, Takizawa K, Tezduyar TE (2022) Boundary layer mesh resolution in flow computation with the space-time variational multiscale method and isogeometric discretization. Math Mod Methods Appl Sci 32(12):2401–2443. https://doi.org/10.1142/S0218202522500567

    Article  MathSciNet  MATH  Google Scholar 

  30. Cen H, Zhou Q, Korobenko A (2022) Isogeometric variational multiscale modeling of stably stratified flow over complex terrains. Math Mod Methods Appl Sci 32(12):2371–2399. https://doi.org/10.1142/S0218202522500555

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu Y, Takizawa K, Tezduyar TE, Kuraishi T, Zhang Y (2022) Carrier-domain method for high-resolution computation of time-periodic long-wake flows. Comput Mech 71:169–190. https://doi.org/10.1007/s00466-022-02230-6

    Article  MathSciNet  MATH  Google Scholar 

  32. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    Article  MathSciNet  MATH  Google Scholar 

  33. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19:171–225. https://doi.org/10.1007/s11831-012-9071-3

    Article  MathSciNet  MATH  Google Scholar 

  34. Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Models Methods Appl Sci 22(02):1230002. https://doi.org/10.1142/S0218202512300025

    Article  MATH  Google Scholar 

  35. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley. https://doi.org/10.1002/9781118483565

    Article  MATH  Google Scholar 

  36. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Challenges and directions in computational fluid-structure interaction. Math Mod Methods Appl Sci 23:215–221. https://doi.org/10.1142/S0218202513400010

    Article  MathSciNet  MATH  Google Scholar 

  37. Bazilevs Y, Takizawa K, Tezduyar TE (2015) New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods. Math Mod Methods Appl Sci 25:2217–2226. https://doi.org/10.1142/S0218202515020029

    Article  MathSciNet  MATH  Google Scholar 

  38. Bazilevs Y, Takizawa K, Tezduyar TE (2019) Computational analysis methods for complex unsteady flow problems. Math Mod Methods Appl Sci 29:825–838. https://doi.org/10.1142/S0218202519020020

    Article  MathSciNet  MATH  Google Scholar 

  39. Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid-structure interactions. Arch Comput Methods Eng 19:125–169. https://doi.org/10.1007/s11831-012-9070-4

    Article  MathSciNet  MATH  Google Scholar 

  40. Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012) Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854. https://doi.org/10.1007/s00466-012-0761-3

    Article  Google Scholar 

  41. Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013) Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364. https://doi.org/10.1007/s00466-013-0880-5

    Article  MATH  Google Scholar 

  42. Takizawa K, Tezduyar TE, Boswell C, Tsutsui Y, Montel K (2015) Special methods for aerodynamic-moment calculations from parachute FSI modeling. Comput Mech 55:1059–1069. https://doi.org/10.1007/s00466-014-1074-5

    Article  Google Scholar 

  43. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid-structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332. https://doi.org/10.1016/S0045-7825(00)00204-8

    Article  MATH  Google Scholar 

  44. Kuraishi T, Yamasaki S, Takizawa K, Tezduyar TE, Xu Z, Kaneko R (2022) Space-time isogeometric analysis of car and tire aerodynamics with road contact and tire deformation and rotation. Comput Mech 70(1):49–72

    Article  MathSciNet  MATH  Google Scholar 

  45. Takizawa K, Bazilevs Y, Tezduyar T (2022) Mesh moving methods in flow computations with the space-time and arbitrary Lagrangian–Eulerian methods. J Adv Eng Comput 6(85):112

    Google Scholar 

  46. Zhu Q, Yan J, Tejada-Martínez A, Bazilevs Y (2020) Variational multiscale modeling of langmuir turbulent boundary layers in shallow water using isogeometric analysis. Mech Res Commun 108:103570. https://doi.org/10.1016/j.mechrescom.2020.103570

    Article  Google Scholar 

  47. Ravensbergen M, Helgedagsrud TA, Bazilevs Y, Korobenko A (2020) A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains. Comput Methods Appl Mech Eng 368:113182. https://doi.org/10.1016/j.cma.2020.113182

    Article  MathSciNet  MATH  Google Scholar 

  48. Yan J, Korobenko A, Tejada-Martinez AE, Golshan R, Bazilevs Y (2017) A new variational multiscale formulation for stratified incompressible turbulent flows. Comput Fluids 158:150–156. https://doi.org/10.1016/j.compfluid.2016.12.004

    Article  MathSciNet  MATH  Google Scholar 

  49. Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235. https://doi.org/10.1002/fld.2400

    Article  MATH  Google Scholar 

  50. Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48:333–344. https://doi.org/10.1007/s00466-011-0589-2

    Article  MATH  Google Scholar 

  51. Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics. Computat Mech 48:647–657. https://doi.org/10.1007/s00466-011-0614-5

    Article  MATH  Google Scholar 

  52. Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Computat Mech 53:1–15. https://doi.org/10.1007/s00466-013-0888-x

    Article  MATH  Google Scholar 

  53. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space-time methods. Arch Comput Methods Eng 21:481–508. https://doi.org/10.1007/s11831-014-9113-0

    Article  MathSciNet  MATH  Google Scholar 

  54. Takizawa K (2014) Computational engineering analysis with the new-generation space-time methods. Comput Mech 54:193–211. https://doi.org/10.1007/s00466-014-0999-z

    Article  MathSciNet  Google Scholar 

  55. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398. https://doi.org/10.1007/s11831-014-9119-7

    Article  MathSciNet  MATH  Google Scholar 

  56. Takizawa K, Tezduyar TE, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015) Space-time VMS method for flow computations with slip interfaces (ST-SI). Math Mod Methods Appl Sci 25:2377–2406. https://doi.org/10.1142/S0218202515400126

    Article  MathSciNet  MATH  Google Scholar 

  57. Otoguro Y, Mochizuki H, Takizawa K, Tezduyar TE (2020) Space-time variational multiscale isogeometric analysis of a tsunami-shelter vertical-axis wind turbine. Comput Mech 66:1443–1460. https://doi.org/10.1007/s00466-020-01910-5

    Article  MathSciNet  MATH  Google Scholar 

  58. Ravensbergen M, Bayram AM, Korobenko A (2020) The actuator line method for wind turbine modelling applied in a variational multiscale framework. Comput Fluids 201:104465. available online. https://doi.org/10.1016/j.compfluid.2020.104465

  59. Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014) FSI modeling of vertical-axis wind turbines. J Appl Mech 81:081006. https://doi.org/10.1115/1.4027466

    Article  Google Scholar 

  60. Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed), Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty – 2018, Modeling and Simulation in Science, Engineering and Technology, Springer, pp. 253–336. https://doi.org/10.1007/978-3-319-96469-0_7

  61. Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2019) Computer modeling of wind turbines: 1. ALE-VMS and ST-VMS aerodynamic and FSI analysis. Arch Comput Methods Eng 26:1059–1099. https://doi.org/10.1007/s11831-018-9292-1

    Article  MathSciNet  Google Scholar 

  62. Bayram AM, Bear C, Bear M, Korobenko A (2020) Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput Fluids 200:104432. available online. https://doi.org/10.1016/j.compfluid.2020.104432

  63. Yan J, Deng X, Xu F, Xu S, Zhu Q. Numerical simulations of two back-to-back horizontal axis tidal stream turbines in free-surface flows. J Appl Mech 87 (6). https://doi.org/10.1115/1.4046317

  64. Kuraishi T, Zhang F, Takizawa K, Tezduyar TE (2021) Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: I. Computational framework. Comput Mech 68(1):113–130

    Article  MathSciNet  MATH  Google Scholar 

  65. Kuraishi T, Zhang F, Takizawa K, Tezduyar TE (2021) Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: II. Spatial and temporal resolution. Comput Mech 68(1):175–184

  66. Ravensbergen M, Mohamed A, Korobenko A (2020) The actuator line method for wind turbine modelling applied in a variational multiscale framework. Comput Fluids 201:104465

    Article  MathSciNet  MATH  Google Scholar 

  67. Mohamed A, Bear C, Bear M, Korobenko A (2020) Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput Fluids 200:104432

    Article  MathSciNet  MATH  Google Scholar 

  68. Bayram A, Korobenko A (2020) Variational multiscale framework for cavitating flows. Comput Mech, pp 1–19

  69. Yan J, Deng X, Korobenko A, Bazilevs Y (2017) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 158:157–166. https://doi.org/10.1016/j.compfluid.2016.06.016

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhu Q, Yan J (2021) A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows. Comput Math Appl 81:532–546

    Article  MathSciNet  MATH  Google Scholar 

  71. Bayram AM, Korobenko A (2020) Variational multiscale framework for cavitating flows. Comput Mech 66:49–67. https://doi.org/10.1007/s00466-020-01840-2

    Article  MathSciNet  MATH  Google Scholar 

  72. Bayram A, Korobenko A (2021) A numerical formulation for cavitating flows around marine propellers based on variational multiscale method. Comput Mech 68(2):405–432

    Article  MathSciNet  MATH  Google Scholar 

  73. Codoni D, Moutsanidis G, Hsu M-C, Bazilevs Y, Johansen C, Korobenko A (2021) Stabilized methods for high-speed compressible flows: toward hypersonic simulations. Comput Mech 67:785–809. https://doi.org/10.1007/s00466-020-01963-6

    Article  MathSciNet  MATH  Google Scholar 

  74. Terahara T, Takizawa K, Tezduyar TE, Bazilevs Y, Hsu M-C (2020) Heart valve isogeometric sequentially-coupled FSI analysis with the space-time topology change method. Comput Mech 65:1167–1187. https://doi.org/10.1007/s00466-019-01813-0

    Article  MathSciNet  MATH  Google Scholar 

  75. Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071. https://doi.org/10.1007/s00466-014-1059-4

    Article  MathSciNet  MATH  Google Scholar 

  76. Johnson EL, Wu MCH, Xu F, Wiese NM, Rajanna MR, Herrema AJ, Ganapathysubramanian B, Hughes TJR, Sacks MS, Hsu M-C (2020) Thinner biological tissues induce leaflet flutter in aortic heart valve replacements. Proc Nat Acad Sci 117:19007–19016

    Article  Google Scholar 

  77. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C (2019) Computational cardiovascular flow analysis with the variational multiscale methods. J Adv Eng Comput 3:366–405. https://doi.org/10.25073/jaec.201932.245

  78. Kuraishi T, Terahara T, Takizawa K, Tezduyar T (2022) Computational flow analysis with boundary layer and contact representation: I. Tire aerodynamics with road contact. J Mech 38:77–87

  79. Terahara T, Kuraishi T, Takizawa K, Tezduyar T (2022) Computational flow analysis with boundary layer and contact representation: II. Heart valve flow with leaflet contact. J Mech 38:185–194

  80. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M, Terahara T (2022) Computational cardiovascular medicine with isogeometric analysis. J Adv Eng Comput 6(3):167–199

    Article  Google Scholar 

  81. Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Avsar R, Zhang Y (2019) Space-time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. Comput Mech 64:1403–1419. https://doi.org/10.1007/s00466-019-01722-2

    Article  MathSciNet  MATH  Google Scholar 

  82. Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Mei S (2019) Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis. Comput Fluids 179:764–776. https://doi.org/10.1016/j.compfluid.2018.05.019

    Article  MathSciNet  MATH  Google Scholar 

  83. Xu F, Moutsanidis G, Kamensky D, Hsu M-C, Murugan M, Ghoshal A, Bazilevs Y (2017) Compressible flows on moving domains: stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling. Comput Fluids 158:201–220. https://doi.org/10.1016/j.compfluid.2017.02.006

    Article  MathSciNet  MATH  Google Scholar 

  84. Takizawa K, Tezduyar TE, Kuraishi T (2015) Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Math Mod Methods Appl Sci 25:2227–2255. https://doi.org/10.1142/S0218202515400072

    Article  MATH  Google Scholar 

  85. Kuraishi T, Takizawa K, Tabata S, Asada S, Tezduyar TE (2014) Multiscale thermo-fluid analysis of a tire. In: Proceedings of the 19th Japan society of computational engineering and science conference, Hiroshima, Japan

  86. Kuraishi T, Takizawa K, Tezduyar TE (2018) Space–time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformationIn: Tezduyar TE (ed.), Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018, Modeling and Simulation in Science, Engineering and Technology, Springer, pp 337–376. https://doi.org/10.1007/978-3-319-96469-0_8

  87. Kuraishi T, Takizawa K, Tezduyar TE (2019) Tire aerodynamics with actual tire geometry, road contact and tire deformation. Comput Mech 63:1165–1185. https://doi.org/10.1007/s00466-018-1642-1

    Article  MathSciNet  MATH  Google Scholar 

  88. Kuraishi T, Takizawa K, Tezduyar TE (2019) Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. Comput Mech 64:1699–1718. https://doi.org/10.1007/s00466-019-01746-8

    Article  MATH  Google Scholar 

  89. Kuraishi T, Xu Z, Takizawa K, Tezduyar T, Yamasaki S (2022) High-resolution multi-domain space-time isogeometric analysis of car and tire aerodynamics with road contact and tire deformation and rotation. Comput Mech 70(6):1257–1279

    Article  MATH  Google Scholar 

  90. Chung YM, Sung HJ (1997) Comparative study of inflow conditions for spatially evolving simulation. AIAA J 35(2):269–274

    Article  MATH  Google Scholar 

  91. Yang XI, Meneveau C (2016) Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces. J Turbulence 17(1):75–93

    Article  MathSciNet  Google Scholar 

  92. Stolz S, Adams NA (2003) Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys Fluids 15(8):2398–2412

    Article  MATH  Google Scholar 

  93. Morgan B, Larsson J, Kawai S, Lele SK (2011) Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J 49(3):582–597

    Article  Google Scholar 

  94. Pamiès M, Weiss P-E, Garnier E, Deck S, Sagaut P (2009) Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Phys Fluids 21(4):045103

    Article  MATH  Google Scholar 

  95. Shur ML, Spalart PR, Strelets MK, Travin AK (2014) Synthetic turbulence generators for rans-les interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow Turbulence Combustion 93(1):63–92

  96. Poletto R, Craft T, Revell A (2013) A new divergence free synthetic eddy method for the reproduction of inlet flow conditions for LES. Flow Turbulence Combustion 91(3):519–539

  97. Kraichnan RH (1970) Diffusion by a random velocity field. Phys Fluids 13(1):22–31

    Article  MATH  Google Scholar 

  98. Bechara W, Bailly C, Lafon P, Candel SM (1994) Stochastic approach to noise modeling for free turbulent flows. AIAA J 32(3):455–463

    Article  MATH  Google Scholar 

  99. Jarrin N, Benhamadouche S, Laurence D, Prosser R (2006) A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int J Heat Fluid Flow 27(4):585–593

    Article  Google Scholar 

  100. Jarrin N, Prosser R, Uribe J-C, Benhamadouche S, Laurence D (2009) Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy method. Int J Heat Fluid Flow 30(3):435–442

    Article  Google Scholar 

  101. Li T, Yang Q, Ishihara T (2018) Unsteady aerodynamic characteristics of long-span roofs under forced excitation. J Wind Eng Ind Aerodyn 181:46–60

    Article  Google Scholar 

  102. Kawai H (1983) Pressure fluctuations on square prisms-applicability of strip and quasi-steady theories. J Wind Eng Ind Aerodyn 13(1–3):197–208

    Article  Google Scholar 

  103. Letchford CW, Iverson RE, McDonald JR (1993) The application of the quasi-steady theory to full scale measurements on the texas tech building. J Wind Eng Ind Aerodyn 48(1):111–132

    Article  Google Scholar 

  104. Richards PJ, Hoxey RP, Wanigaratne BS (1995) The effect of directional variations on the observed mean and rms pressure coefficients. J Wind Eng Ind Aerodyn 54:359–367

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Center for Infrastructure Resilience in Cities as Livable Environments (CIRCLE) within the ZJU-UIUC Joint Research Program under the Grant of No. DREMES202001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuguang Wang or Jinhui Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Wang, X., Demartino, C. et al. Revealing aeroelastic effects on low-rise roof structures in turbulent winds via isogeometric fluid–structure interaction. Comput Mech 72, 1175–1190 (2023). https://doi.org/10.1007/s00466-023-02341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02341-8

Keywords

Navigation