Skip to main content
Log in

A second-order strain gradient fracture model for the brittle materials with micro-cracks by a multiscale asymptotic homogenization

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work, applying a second-order multiscale asymptotic homogenization, an effective fracture model is established for the brittle materials with periodic distribution of micro-cracks. The novel second-order strain gradient fracture model based on the multiscale asymptotic technique is rigorously derived without any phenomenological assumptions, and the fourth-, sixth-, and eighth-order effective elastic tensors of the fracture criterions are obtained by the first-order and second-order multiscale unit cell functions. The significant features of the novel model are: (i) the first-order, second-order strain gradient effect and microstructure size ξ included in the fracture criterion and (ii) the strain energy and the Griffith criterion for micro-crack extensions obtained by the high-order multiscale asymptotic homogenization. Finally, the effectiveness of the proposed model is compared with the direct numerical simulations (DNS), experimental data and some typical fracture problems including Mode I crack plate, rectangular plate with two symmetric V-notch and a holed plate are also evaluated. These examples show that the second-order strain gradient fracture model is valid for solving the brittle materials with periodic distribution of micro-cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Francois B, Dascalu C (2010) A two-scale time-dependent damage model based on non-planar growth of micro-cracks. J Mech Phys Solids 58:1928–1946

    Article  MathSciNet  MATH  Google Scholar 

  2. Li J (2011) A micromechanics-based strain gradient damage model for fracture prediction of brittle materials - part i: Homogenization methodology and constitutive relations. Int J Solids Struct 48(24):3336–3345

    Article  Google Scholar 

  3. Li J, Pham T, Abdelmoula R, Song F, Jiang C (2011) A micromechanics-based strain gradient damage model for fracture prediction of brittle materials - part ii: Damage modeling and numerical simulations. Int J Solids Struct 48(24):3346–3358

    Article  Google Scholar 

  4. Eringen A (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10(5):425–435

    Article  MATH  Google Scholar 

  5. Povstenko YZ (1999) The nonlocal theory of elasticity and its applications to the description of defects in solid bodies. J Math Sci 97(1):3840–3845

    Article  Google Scholar 

  6. Pijaudier-Cabot G, Bazant Z (1987) Nonlocal damage theory. J Eng Mech 113:1512–1533

    MATH  Google Scholar 

  7. Apuzzo A, Barretta R, Canadija M, Feo L, Luciano R, de Sciarra FM (2017) A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation. Compos Part B: Eng 108:315–324

    Article  Google Scholar 

  8. Barretta R, Feo L, Luciano R, de Sciarra FM, Penna R (2016) Functionally graded Timoshenko nanobeams: a novel nonlocal gradient formulation. Compos B Eng 100:208–219

    Article  Google Scholar 

  9. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Article  Google Scholar 

  10. Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30(10):1279–1299

    Article  MATH  Google Scholar 

  11. Mühlhaus HB, Oka F (1996) Dispersion and wave propagation in discrete and continuous models for granular materials. Int J Solids Struct 33(19):2841–2858

    Article  MATH  Google Scholar 

  12. Ru CQ, Aifantis EC (1993) A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech 101(1–4):59–68

    Article  MathSciNet  MATH  Google Scholar 

  13. Aifantis EC (2003) Update on a class of gradient theories. Mech Mater 35(3–6):259–280

    Article  Google Scholar 

  14. Gutkin MY, Aifantis EC (1999) Dislocations in the theory of gradient elasticity. Scr Mater 5(40):559–566

    Article  Google Scholar 

  15. Jamalpoor A, Hosseini M (2015) Biaxial buckling analysis of double-orthotropic microplate-systems including in-plane magnetic field based on strain gradient theory. Compos Part B: Eng 75:53–64

    Article  Google Scholar 

  16. Zhang B, He Y, Liu D, Lei J, Shen L, Wang L (2015) A size-dependent thirdorder shear deformable plate model incorporating strain gradient effects for mechanical analysis of functionally graded circular/annular microplates. Compos Part B: Eng 79:553–580

    Article  Google Scholar 

  17. Di Paola M, Failla G, Zingales M (2009) Physically-based approach to the mechanics of strong non-local linear elasticity theory. J Elasticity 97(2):103–130

    Article  MathSciNet  MATH  Google Scholar 

  18. Di Paola M, Failla G, Pirrotta A, Sofi A, Zingales M (2013) The mechanically based non-local elasticity: an overview of main results and future challenges. Philos Trans R Soc A 371(1993):20120433

    Article  MathSciNet  MATH  Google Scholar 

  19. Eringen A, Suhubi E (1964) Nonlinear theory of simple micro-elastic solids-I. Int J Eng Sci 2(2):189–203

    Article  MathSciNet  MATH  Google Scholar 

  20. Mindlin R (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51–78

    Article  MathSciNet  MATH  Google Scholar 

  21. Toupin R (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11:385–414

    Article  MathSciNet  MATH  Google Scholar 

  22. Acharya A, Bassani JL (2000) Incompatibility and crystal plasticity. J Mech Phys Solids 48:1565–1595

    Article  MathSciNet  MATH  Google Scholar 

  23. Bassani JL, Needleman A, Van der Giessen E (2001) Plastic flow in a composite: a comparison of nonlocal continuum and discrete dislocation predictions. Int J Solids Struct 38:833–853

    Article  MATH  Google Scholar 

  24. Arsenlis A, Parks DM (1999) Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater 47:1597–1611

    Article  Google Scholar 

  25. Busso EP, Meissonneir FT, O’Dowd NP (2000) Gradient-dependent deformation of two-phase single crystals. J Mech Phys Solids 48:2333–2362

    Article  MATH  Google Scholar 

  26. Aifantis EC (1984) On the microstructural origin of certain inelastic models. Trans ASME J Eng Mater Technol 106:326–330

    Article  Google Scholar 

  27. Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41(12):1825–1857

    Article  MathSciNet  MATH  Google Scholar 

  28. Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49(10):2245–2271

    Article  MATH  Google Scholar 

  29. Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361

    Article  MATH  Google Scholar 

  30. Gurtin ME (2002) A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 50(1):5–32

    Article  MathSciNet  MATH  Google Scholar 

  31. Menzel A (2000) On the continuum formulation of higher gradient plasticity for single and polycrystals. J Mech Phys Solids 48(8):1777–1796

    Article  MathSciNet  MATH  Google Scholar 

  32. Gudmundson P (2004) A unified treatment of strain gradient plasticity. J Mech Phys Solids 52(6):1379–1406

    Article  MathSciNet  MATH  Google Scholar 

  33. McVeigh C, Liu WK (2008) Linking microstructure and properties through a predictive multiresolution continuum. Comput Methods Appl Mech Eng 197(41–42):3268–3290

    Article  MATH  Google Scholar 

  34. McVeigh C, Vernerey F, Liu WK, Brinson C (2006) Multiresolution analysis for material design. Comput Methods Appl Mech Eng 195:5053–5076

    Article  MathSciNet  MATH  Google Scholar 

  35. Vernerey FJ, Liu WK, Moran B (2007) Multi-scale micromorphic theory for hierarchical materials. J Mech Phys Solids 55:2603–2651

    Article  MathSciNet  MATH  Google Scholar 

  36. Vernerey FJ et al (2008) A micromorphic model for the multiple scale failure of heterogeneous materials. J Mech Phys Solids 56(4):1320–1347

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen J, Wei Y, Huang Y, Hutchinson J, Hwang K (1999) The crack tip fields in strain gradient plasticity: the asymptotic and numerical analyses. Eng Fract Mech 64(5):625–648

    Article  Google Scholar 

  38. Goutianos S (2011) Mode i and mixed mode crack-tip fields in strain gradient plasticity. Int J Non-linear Mech 46(9):1223–1231

    Article  Google Scholar 

  39. Jiang H, Huang Y, Zhuang Z, Hwang KC (2001) Fracture in mechanism-based strain gradient plasticity. J Mech Phys Solids 49(5):979–993

    Article  MATH  Google Scholar 

  40. Martınez-Paneda E, Fleck NA (2019) Mode i crack tip fields: strain gradient plasticity theory versus j2 flow theory. Eur J Mech A/Solids 75:381–388

    Article  MathSciNet  MATH  Google Scholar 

  41. Peerlings RHJ, De Borst R, Brekelmans WAM, De Vree JHP (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39(19):3391–3403

    Article  MATH  Google Scholar 

  42. Rao YP, Xiang MZ, Cui JZ (2022) A strain gradient brittle fracture model based on two-scale asymptotic analysis. J Mech Phys Solids 159:104752

    Article  MathSciNet  Google Scholar 

  43. Sluys LJ (1992) Wave propagation, localisation and dispersion in softening solids. Dissertation, Delft University of Technology

  44. Chang CS, Gao J (1995) Second-gradient constitutive theory for granular material with random packing structure. Int J Solids Struct 32(16):2279–2293

    Article  MATH  Google Scholar 

  45. De Borst R, Muhlhaus HB (1992) Gradient-dependent plasticity: formulation and algorithmic aspects. Int J Numer Methods Eng 35:521–539

    Article  MATH  Google Scholar 

  46. Bacigalupo A, Gambarotta L (2010) Second-order computational homogenization of heterogeneous materials with periodic microstructure. ZAMM-J Appl Math Mech 90(10–11):796–811

    Article  MathSciNet  MATH  Google Scholar 

  47. Bacigalupo A, Gambarotta L (2014) Second-gradient homogenized model for wave propagation in heterogeneous periodic media. Int J Solids Struct 51(5):1052–1065

    Article  Google Scholar 

  48. Goda I, Ganghoffer JF (2016) Construction of first and second order grade anisotropic continuum media for 3D porous and textile composite structures. Compos Struct 141:292–327

    Article  Google Scholar 

  49. Berkache K, Deogekar S, Goda I, Picu R, Ganghoffer J-F (2017) Construction of second gradient continuum models for random fibrous networks and analysis of size effects. Compos Struct 181:347–357

    Article  Google Scholar 

  50. Yvonnet J, Auffray N, Monchiet V (2020) Computational second-order homogenization of materials with effective anisotropic strain-gradient behavior. Int J Solids Struct 191–192(15):434–448

    Article  Google Scholar 

  51. Babu B, Patel BP (2019) A new computationally efficient finite element formulation for nanoplates using second-order strain gradient Kirchhoff’s plate theory. Compos Part B: Eng 168:302–311

    Article  Google Scholar 

  52. Kouznetsova V, Geers M, Brekelmans W (2002) Multi-scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260

    Article  MATH  Google Scholar 

  53. Kouznetsova V, Geers M, Brekelmans W (2004) Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193:5525–5550

    Article  MATH  Google Scholar 

  54. Lesicar T, Tonkovic Z, Soric J (2014) A second-order two-scale homogenization procedure using c1 macrolevel discretization. Comput Mech 54(2):425–441

    Article  MathSciNet  MATH  Google Scholar 

  55. Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28–30):3233–3244

    Article  MATH  Google Scholar 

  56. Forest S (1998) Mechanics of generalized continua: construction by homogenizaton. Le J. Phys. IV 8(PR4):Pr4-39

    Google Scholar 

  57. Forest S, Pradel F, Sab K (2001) Asymptotic analysis of heterogeneous cosserat media. Int J Solids Struct 38(26–27):4585–4608

    Article  MathSciNet  MATH  Google Scholar 

  58. Gologanu M, Leblond J-B, Perrin G, Devaux J (1997) Recent extensions of Gurson’s model for porous ductile metals. In: Continuum micromechanics. Springer, pp 61–130

  59. Bensoussan A, Lions JL, Papanicolaou G (2011) Asymptotic analysis for periodic structures. American Mathematical Society, Rhode Island

    MATH  Google Scholar 

  60. Jikov VV, Kozlov SM, Oleinik OA (1994) Homogenization of differential operators and integral functions. Springer, Berlin

    Book  Google Scholar 

  61. Oleinik OA, Shamaev AS, Yosifian GA (1992) Mathematical problems in elasticity and homogenization. North-Holland, Amsterdam

    MATH  Google Scholar 

  62. Allaire G (2003) Homogenization and two-scale convergence. SIAM J Math Anal 23(6):1482–1518

    Article  MathSciNet  MATH  Google Scholar 

  63. Hou TY, Wu XH (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134:169–189

    Article  MathSciNet  MATH  Google Scholar 

  64. Zhang HW, Wu JK, Fu ZD (2010) Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials. Comput Mech 45:623–635

    Article  MATH  Google Scholar 

  65. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401

    Article  MathSciNet  MATH  Google Scholar 

  66. Zabaras N, Ganapathysubramanian B (2009) A stochastic multiscale framework for modeling flow through random heterogeneous porous media. J Comput Phys 228:591–618

    Article  MathSciNet  MATH  Google Scholar 

  67. Weinan E, Engquist B (2003) The heterogenous multiscale methods. Commun Math Sci 1:87–132

    Article  MathSciNet  MATH  Google Scholar 

  68. Yu XG, Cui JZ (2007) The prediction on mechanical properties of 4-step braided composites via two-scale method. Compos Sci Technol 67:471–480

    Article  Google Scholar 

  69. Yang ZQ, Cui JZ, Sun Y (2016) Transient heat conduction problem with radiation boundary condition of statistically inhomogeneous materials by second-order two-scale method. Int J Heat Mass Transf 100:362–377

    Article  Google Scholar 

  70. Allaire G, Habibi Z (2013) Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discrete Contin Dyn B 18(1):1–36

    MathSciNet  MATH  Google Scholar 

  71. Bourgat JF (1979) Numerical experiments of the homogenization method for operators with periodic coefficients. In: Computing Methods in Applied Sciences and Engineering, Lecture Notes in Math., vol. 704. Springer, Berlin, pp 330–356

  72. Gambin B, Kroner E (1989) Higher-order terms in the homogenized stress-strain relation of periodic elastic media. Phys Stat Sol (b) 151:513–519

    Article  Google Scholar 

  73. Bacigalupo A (2014) Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits. Meccanica 49:1407–1425

    Article  MathSciNet  MATH  Google Scholar 

  74. Smyshlyaev VP, Cherednichenko K (2000) On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J Mech Phys Solids 48(6):1325–1357

    Article  MathSciNet  MATH  Google Scholar 

  75. Triantafyllidis N, Bardenhagen S (1996) The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models. J Mech Phys Solids 44(11):1891–1928

    Article  MathSciNet  MATH  Google Scholar 

  76. Peerlings RR, Fleck NN (2004) Computational evaluation of strain gradient elasticity constants. Int J Multiscale Comput Eng 2(4):599–619

    Article  Google Scholar 

  77. Dascalu C, Bilbie G, Agiasofitou EK (2008) Damage and size effects in elastic solids: a homogenization approach. Int J Solids Struct 45(2):409–430

    Article  MATH  Google Scholar 

  78. Keita O, Dascalu C, Francois B (2014) A two-scale model for dynamic damage evolution. J Mech Phys Solids 64:170–183

    Article  MathSciNet  Google Scholar 

  79. Li J, Zhang XB (2006) A criterion study for non-singular stress concentrations in brittle or quasi-brittle materials. Eng Fact Mech 73(4):505–523

    Google Scholar 

  80. Cao LQ (2006) Multiscale asymptotic expansion and finite element methods for the mixed boundary value problems of second order elliptic equation in perforated domains. Numer Math 103:11–45

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the research funding from the Excellent Youth Project of Heilongjiang Natural Science Foundation (YQ2021A005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Yang or Meizhen Xiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Theoretical analysis for the multiscale asymptotic expansion

In order to compare \({\mathbf{u}}_{1}^{\xi } ({\mathbf{x}})\) and \({\mathbf{u}}_{2}^{\xi } ({\mathbf{x}})\) with the source solutions of (1), we take \({\mathbf{u}}^{\xi } ({\mathbf{x}}) - {\mathbf{u}}_{1}^{\xi } ({\mathbf{x}})\) into the problem (1) of this work, and has the following equality:

$$\begin{aligned} & L_{\xi } \left( {{\mathbf{u}}^{\xi }({\mathbf{x}}) - {\mathbf{u}}_{1}^{\xi } ({\mathbf{x}})} \right) =f_{i} ({\mathbf{x}}) \\ & \quad \times \left[ {\frac{\partial }{{\partial y_{j} }}} \left( {L_{{ijk\alpha_{2} }}({\mathbf{y}})\varphi_{m}^{{\alpha_{1} k}} ({\mathbf{y}})} \right) +L_{{i\alpha_{1} m\alpha_{2} }} ({\mathbf{y}})\right. \\ & \quad \left.+ L_{{i\alpha_{1} kj}} ({\mathbf{y}}) {\frac{{\partial \varphi_{m}^{{\alpha_{2} k}} ({\mathbf{y}})}}{{\partial y_{j} }}}\right]\frac{{\partial^{2} u_{k}^{(0)} }}{{\partial x_{{\alpha_{1} }} \partial x_{{\alpha_{2} }} }} + \xi L_{ijkl}({\mathbf{y}})\varphi_{m}^{{\alpha_{1} k}} ({\mathbf{y}})\\ & \quad \frac{{\partial^{3} u_{k}^{(0)} }}{{\partial x_{j} \partial x_{l}\partial x_{{\alpha{1} }} }} = O(1) \end{aligned}$$
(36)

where \(L_{\xi } = - \frac{\partial }{{\partial x_{j} }}\left[ {L_{ijkl} (\frac{{\mathbf{x}}}{\xi })\frac{{1}}{{2}}(\frac{\partial }{{\partial x_{k} }} + \frac{\partial }{{\partial x_{l} }})} \right]\). It can be found that the residual (36) is the order \(O(1)\). However, \(\xi\) is a fixed parameter rather than tending to zero for practical engineering computation. The error \(O(1)\) can be not accepted for scientists who want to accurately obtain the microscopic information of the periodic composites.

Further, taking \({\mathbf{u}}^{\xi } ({\mathbf{x}}) - {\mathbf{u}}_{{2}}^{\xi } ({\mathbf{x}})\) into source Eqs. (1) of this work yields to

$$ \begin{aligned} &L_{\xi } \left( {{\mathbf{u}}^{\xi } ({\mathbf{x}}) - {\mathbf{u}}_{{2}}^{\xi } ({\mathbf{x}})} \right) \hfill \\ &\quad= - \frac{\partial }{{\partial x_{j} }}(L_{ijkl}^{\xi } ({\mathbf{x}})\frac{{\partial u_{k}^{\xi } ({\mathbf{x}})}}{{\partial x_{l} }}) \hfill \\ &\qquad+ \frac{\partial }{{\partial x_{j} }}\left\{ {L_{ijkl} ({\mathbf{y}})\frac{\partial }{{\partial x_{j} }}\left[ {{\mathbf{u}}^{(0)} ({\mathbf{x}}) + \xi \left( {{\varvec{\varphi }}^{kl} ({\mathbf{y}})\varepsilon_{kl}^{(0)} ({\mathbf{x}})} \right)} \right.} \right. \hfill \\ &\qquad+ \left. {\left. {\xi^{2} \left( {{{\varvec{\Phi}}}_{p}^{kl} ({\mathbf{y}})\frac{\partial }{{\partial x_{p} }}\varepsilon_{kl}^{(0)} ({\mathbf{x}})} \right)} \right]} \right\} = O(\xi ), \hfill \\ \end{aligned} $$
(37)

It is easy to find that the residuals of (37) are the order \(O(\xi )\). In other words, the second-order multiscale approximate solutions are equivalent to the solutions of source problem (1) in \(O(\xi )\)-order pointwise sense. And, it is important to obtain the accurate solutions of the periodic composites for the actual engineering computations. This is also why we consider the second-order multiscale asymptotic expansion in this work.

Appendix B: Symmetric and anti-symmetric property of first- and second-order cell functions

The micro-cracks of the structure with length l are supposed to be straight, and the cell configurations are symmetric about the middle plane, as shown in Fig. 

Fig. 31
figure 31

Refined meshes in unit cell with d = 0.5

31. The symmetric and anti-symmetric features of first- and second-order cell functions are shown in Figs.

Fig. 32
figure 32

First-order cell functions \(\varphi_{i}^{kl} ({\mathbf{y}})\) with d = 0.5

32 and

Fig. 33
figure 33

Second-order cell functions \(\Phi_{ip}^{kl} ({\mathbf{y}})\) with d = 0.5

33 with normalized micro-crack d = 0.5.

The proof of the symmetric and anti-symmetric features for the first-order functions \(\varphi_{i}^{kl} ({\mathbf{y}})\) can be found in Rao et al. [42] and Cao [80]. Similarly, the symmetry and anti-symmetry for the second-order unit cell functions \(\Phi_{ip}^{kl} ({\mathbf{y}})\) can also obtained Cao [80]. The variational forms of (13) are

$$ \begin{aligned} &\int_{{\Theta_{s} }} {\left( {L_{{ijk\alpha_{2} }} ({\mathbf{y}})\varphi_{k}^{{\alpha_{1} m}} ({\mathbf{y}}) + L_{ijkl} ({\mathbf{y}})\varepsilon_{ykl} ({{\varvec{\Phi}}}_{m}^{{\alpha_{1} \alpha_{2} }} ({\mathbf{y}}))} \right)} \varepsilon_{yij} ({\mathbf{v}}) \hfill \\&\quad + (L_{{i\alpha_{1} m\alpha_{2} }} ({\mathbf{y}}) + L_{{i\alpha_{1} kj}} ({\mathbf{y}})\frac{{\partial \varphi_{k}^{{\alpha_{2} m}} ({\mathbf{y}})}}{{\partial y_{j} }} \\&\quad- \frac{{1}}{{\left| {\Theta_{s} } \right|}}\overline{L}_{{i\alpha_{1} m\alpha_{2} }} ){\mathbf{v}}_{i} d{\mathbf{y}} = 0,\;\;\forall {\mathbf{v}} \in S(\Theta_{s} ) \hfill \\ \end{aligned} $$
(38)

where \(\varepsilon_{ykl} ({\mathbf{v}}) = \frac{{1}}{{2}}(\frac{{\partial v_{k} }}{{\partial y_{l} }} + \frac{{\partial v_{l} }}{{\partial y_{k} }})\).

In addition, the function spaces are defined by

$$ S(\Theta_{s} ) = \left\{ {{\mathbf{v}}|{\mathbf{v}} \in \left[ {H^{1} (\Theta_{s} )} \right]^{2} ,{\mathbf{v}}\;{\text{is}}\;{\text{periodic}}\;{\text{in}}\;\Theta_{s} ,\;\int_{{\Theta_{s} }} {{\mathbf{v}}d{\mathbf{y}} = 0} \;} \right\} $$

where \(H^{1} (\Theta_{s} )\) represents the Sobolev space [Cao [80]].

Considering \({{\varvec{\Phi}}}_{p}^{kl} ({\mathbf{y}})\), and we introduce a vector valued \({\overline{\varvec{\Phi }}}_{1}^{11} (y_{1} ,y_{2} )\) given by

\(\overline{\Phi }_{11}^{11} (y_{1} ,y_{2} ) = \Phi_{11}^{11} (1 - y_{1} ,y_{2} )\), \(\overline{\Phi }_{12}^{11} (y_{1} ,y_{2} ) = - \Phi_{12}^{11} (1 - y_{1} ,y_{2} )\).

Further, a given test function \({\mathbf{v}}(y_{1} ,y_{2} )\) is defined as follows:

$$ {\overline{\mathbf{v}}}_{11}^{11} (y_{1} ,y_{2} ) = {\mathbf{v}}_{11}^{11} (1 - y_{1} ,y_{2} ),\;\;\;\;{\overline{\mathbf{v}}}_{12}^{11} (y_{1} ,y_{2} ) = - {\mathbf{v}}_{12}^{11} (1 - y_{1} ,y_{2} ) $$

Using (38), we have the following equality:

$$ \begin{gathered} \int_{{\Theta_{s} }} {\left( {L_{ijk1} ({\mathbf{y}})\varphi_{k}^{11} ({\mathbf{y}}) + L_{ijkl} ({\mathbf{y}})\varepsilon_{ykl} ({\overline{\varvec{\Phi }}}_{1}^{11} ({\mathbf{y}}))} \right)} \varepsilon_{yij} ({\overline{\mathbf{v}}}) \hfill \\ \quad+ (L_{i111} ({\mathbf{y}}) + L_{i1kj} ({\mathbf{y}})\frac{{\partial \varphi_{k}^{11} ({\mathbf{y}})}}{{\partial y_{j} }} - \frac{{1}}{{\left| {\Theta_{s} } \right|}}\overline{L}_{i111} ){\overline{\mathbf{v}}}_{i} d{\mathbf{y}} = 0, \hfill \\ \end{gathered} $$
(39)

From (38) and (39), it can be found that \({\overline{\varvec{\Phi }}}_{1}^{11} (y_{1} ,y_{2} )\) and \({{\varvec{\Phi}}}_{1}^{11} (y_{1} ,y_{2} )\) have the same variational forms. And, the second-order unit cell functions should satisfy that

$$ {{\varvec{\Phi}}}_{11}^{11} (y_{1} ,y_{2} ) = \overline{\Phi }_{11}^{11} (y_{1} ,y_{2} ) = \Phi_{11}^{11} (1 - y_{1} ,y_{2} ) $$

and.

\(\Phi_{12}^{11} (y_{1} ,y_{2} ) = \overline{\Phi }_{12}^{11} (y_{1} ,y_{2} ) = - \Phi_{12}^{11} (1 - y_{1} ,y_{2} )\).

Finally, we can obtain the following relations for all the unit cell functions:

$$ \begin{gathered} \varphi_{{1}}^{{{11}}} (y_{1} ,y_{2} ) = - \varphi_{{1}}^{{{11}}} (1 - y_{1} ,y_{2} ) = \varphi_{{1}}^{{{11}}} (y_{1} ,1 - y_{2} ) \hfill \\ \varphi_{2}^{{{11}}} (y_{1} ,y_{2} ) = - \varphi_{2}^{{{11}}} (y_{1} ,1 - y_{2} ) = \varphi_{2}^{{{11}}} (1 - y_{1} ,y_{2} ) \hfill \\ \varphi_{1}^{{{12}}} (y_{1} ,y_{2} ) = - \varphi_{1}^{{{12}}} (y_{1} ,1 - y_{2} ) = \varphi_{1}^{{{12}}} (1 - y_{1} ,y_{2} ) \hfill \\ \varphi_{2}^{{{12}}} (y_{1} ,y_{2} ) = - \varphi_{2}^{{{12}}} (1 - y_{1} ,y_{2} ) = \varphi_{2}^{{{12}}} (y_{1} ,1 - y_{2} ) \hfill \\ \varphi_{1}^{{{22}}} (y_{1} ,y_{2} ) = - \varphi_{1}^{{{22}}} (1 - y_{1} ,y_{2} ) = \varphi_{1}^{{{22}}} (y_{1} ,1 - y_{2} ) \hfill \\ \varphi_{2}^{{{22}}} (y_{1} ,y_{2} ) = - \varphi_{2}^{{{22}}} (y_{1} ,1 - y_{2} ) = \varphi_{2}^{{{22}}} (1 - y_{1} ,y_{2} ) \hfill \\ \end{gathered} $$
(40)

and

$$ \begin{gathered} \Phi_{{{11}}}^{{{11}}} (y_{1} ,y_{2} ) = \Phi_{{{11}}}^{{{11}}} (1 - y_{1} ,y_{2} ) = \Phi_{{{11}}}^{{{11}}} (y_{1} ,1 - y_{2} ) \hfill \\ \Phi_{{{21}}}^{{{11}}} (y_{1} ,y_{2} ) = - \Phi_{{{21}}}^{{{11}}} (y_{1} ,1 - y_{2} ) = - \Phi_{{{21}}}^{{{11}}} (1 - y_{1} ,y_{2} ) \hfill \\ \Phi_{{{12}}}^{{{11}}} (y_{1} ,y_{2} ) = - \Phi_{{{12}}}^{{{11}}} (y_{1} ,1 - y_{2} ) = - \Phi_{{{12}}}^{{{11}}} (1 - y_{1} ,y_{2} ) \hfill \\ \Phi_{{{22}}}^{{{11}}} (y_{1} ,y_{2} ) = \Phi_{{{22}}}^{{{11}}} (1 - y_{1} ,y_{2} ) = \Phi_{{{22}}}^{{{11}}} (y_{1} ,1 - y_{2} ) \hfill \\ \Phi_{{{11}}}^{{{12}}} (y_{1} ,y_{2} ) = - \Phi_{{{11}}}^{{{12}}} (1 - y_{1} ,y_{2} ) = - \Phi_{{{11}}}^{{{12}}} (y_{1} ,1 - y_{2} ) \hfill \\ \Phi_{{{21}}}^{{{12}}} (y_{1} ,y_{2} ) = \Phi_{{{21}}}^{{{12}}} (y_{1} ,1 - y_{2} ) = \Phi_{{{21}}}^{{{12}}} (1 - y_{1} ,y_{2} ) \hfill \\ \Phi_{{{12}}}^{{{12}}} (y_{1} ,y_{2} ) = \Phi_{{{12}}}^{{{12}}} (y_{1} ,1 - y_{2} ) = \Phi_{{{12}}}^{{{12}}} (1 - y_{1} ,y_{2} ) \hfill \\ \Phi_{{{22}}}^{{{12}}} (y_{1} ,y_{2} ) = - \Phi_{{{22}}}^{{{12}}} (y_{1} ,1 - y_{2} ) = - \Phi_{{{22}}}^{{{12}}} (1 - y_{1} ,y_{2} ) \hfill \\ \Phi_{{{11}}}^{{{22}}} (y_{1} ,y_{2} ) = \Phi_{{{11}}}^{{{22}}} (y_{1} ,1 - y_{2} ) = \Phi_{{{11}}}^{{{22}}} (1 - y_{1} ,y_{2} ) \hfill \\ \Phi_{{{21}}}^{{{22}}} (y_{1} ,y_{2} ) = - \Phi_{{{21}}}^{{{22}}} (y_{1} ,1 - y_{2} ) = - \Phi_{{{21}}}^{{{22}}} (1 - y_{1} ,y_{2} ) \hfill \\ \Phi_{{{12}}}^{{{22}}} (y_{1} ,y_{2} ) = - \Phi_{{{12}}}^{{{22}}} (y_{1} ,1 - y_{2} ) = - \Phi_{{{12}}}^{{{22}}} (1 - y_{1} ,y_{2} ) \hfill \\ \Phi_{{{22}}}^{{{22}}} (y_{1} ,y_{2} ) = \Phi_{{{22}}}^{{{22}}} (y_{1} ,1 - y_{2} ) = \Phi_{{{22}}}^{{{22}}} (1 - y_{1} ,y_{2} ) \hfill \\ \end{gathered} $$
(41)

Appendix C: Proof for the equalities (27)

The variational equations of (9) are

$$ \int_{{\Theta_{s} }} {\left( {L_{ijkl} ({\mathbf{y}}) + L_{ijmn} ({\mathbf{y}})\varepsilon_{ymn} ({\varvec{\varphi }}^{kl} ({\mathbf{y}}))} \right)} \varepsilon_{yij} ({\mathbf{v}})d{\mathbf{y}} = 0,\;\forall {\mathbf{v}} \in S(\Theta_{s} ), $$
(42)

where \(\varepsilon_{ykl} ({\mathbf{v}}) = \frac{{1}}{{2}}\left( {\frac{{\partial v_{k} }}{{\partial y_{l} }} + \frac{{\partial v_{l} }}{{\partial y_{k} }}} \right)\).

Taking \({\mathbf{v}} = {\varvec{\varphi }}^{pq} ({\mathbf{y}})\) in (42), and we have that:

$$ \int_{{\Theta_{s} }} {\left( {L_{ijkl} ({\mathbf{y}}) + L_{ijmn} ({\mathbf{y}})\varepsilon_{ymn} ({\varvec{\varphi }}^{kl} ({\mathbf{y}}))} \right)} \varepsilon_{yij} ({\varvec{\varphi }}^{pq} ({\mathbf{y}}))d{\mathbf{y}} = 0. $$
(43)

Further, choosing \({\mathbf{v}} = {{\varvec{\Phi}}}_{p}^{kl} ({\mathbf{y}})\) for (42) yields to

$$ \int_{{\Theta_{s} }} {\left( {L_{ijkl} ({\mathbf{y}}) + L_{ijmn} ({\mathbf{y}})\varepsilon_{ymn} ({\varvec{\varphi }}^{kl} ({\mathbf{y}}))} \right)} \varepsilon_{yij} ({{\varvec{\Phi}}}_{p}^{kl} ({\mathbf{y}}))d{\mathbf{y}} = 0. $$
(44)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Rao, Y., Sun, Y. et al. A second-order strain gradient fracture model for the brittle materials with micro-cracks by a multiscale asymptotic homogenization. Comput Mech 71, 1093–1118 (2023). https://doi.org/10.1007/s00466-023-02281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02281-3

Keywords

Navigation