Skip to main content
Log in

A unified reproducing kernel gradient smoothing Galerkin meshfree approach to strain gradient elasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A unified reproducing kernel gradient smoothing formulation is presented for efficient Galerkin meshfree analysis of strain gradient elasticity problems with particular reference to high order basis functions, such as cubic and quartic basis functions. The integration constraint is elaborated for the Galerkin meshfree formulation of strain gradient elasticity, where the possible inconsistency issue associated with the separate first and second order gradient smoothing formalism is completely resolved. In this approach, the first order smoothed gradients of meshfree shape functions are expressed as a reproduced kernel form and the second order smoothed gradients are deduced from their first order counterparts through direct differentiation. Thereafter, the unknown coefficients in the first and second order smoothed gradients are simultaneously solved from the integration constraint. The resulting smoothed gradients automatically meet the integration consistency by construction. Subsequently, it is proven that the reproducing kernel gradient smoothing quadrature rules for the conventional elasticity problems are well suitable for the strain gradient elasticity problems. Numerical results clearly demonstrate the superior performance of the proposed approach regarding convergence, accuracy, as well as efficiency, in comparison with the Gauss integration-based meshfree formulation for strain gradient elasticity problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  2. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  3. Aifantis EC (1999) Strain gradient interpretation of size effects. Int J Fract 95:299–314

    Article  Google Scholar 

  4. Bazant ZP (2000) Size effect. Int J Solids Struct 37:69–80

    Article  MathSciNet  MATH  Google Scholar 

  5. Altan SB, Aifantis EC (1992) On the structure of the mode-III crack-tip in gradient elasticity. Scr Metall 26:319–324

    Article  Google Scholar 

  6. Altan SB, Aifantis EC (1997) On some aspects in the special theory of gradient elasticity. J Mech Behav Mater 8:231–282

    Article  Google Scholar 

  7. Askes H, Morata I, Aifantis EC (2008) Finite element analysis with staggered gradient elasticity. Comput Struct 86:1266–1279

    Article  Google Scholar 

  8. Papanicolopulos SA, Zervos A, Vardoulakis I (2009) A three-dimensional C1 finite element for gradient elasticity. Int J Numer Meth Eng 77:1396–1415

    Article  MATH  Google Scholar 

  9. Li S, Ren B, Minaki H (2014) Multiscale crystal defect dynamics: a dual-lattice process zone model. Phil Mag 94:1414–1450

    Article  Google Scholar 

  10. Sze KY, Yuan WC, Zhou YX (2020) Four-node tetrahedral elements for gradient-elasticity analysis. Int J Numer Meth Eng 121:3660–3679

    Article  MathSciNet  Google Scholar 

  11. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, New York

    MATH  Google Scholar 

  12. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Elsevier, Singapore

    MATH  Google Scholar 

  13. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  MATH  Google Scholar 

  14. Atluri SN, Shen S (2002) The Meshless Local Petrov–Galerkin (MLPG) Method. Tech Sci.

  15. Li S, Liu WK (2004) Meshfree particle methods. Springer-Verlag

    MATH  Google Scholar 

  16. Zhang X, Liu Y (2004) Meshless Methods. Tsinghua University Press & Springer-Verlag, UK

    Google Scholar 

  17. Liu GR (2009) Meshfree methods: moving beyond the finite element method (2nd edition). CRC Press

    Book  Google Scholar 

  18. Chen JS, Hillman M, Chi SW (2017) Meshfree methods: progress made after 20 years. J Eng Mech-Asce 143:04017001

    Article  Google Scholar 

  19. Wang D, Wang J, Wu J (2020) Arbitrary order recursive formulation of meshfree gradients with application to superconvergent collocation analysis of Kirchhoff plates. Comput Mech 65:877–903

    Article  MathSciNet  MATH  Google Scholar 

  20. Hillman M, Lin KC (2021) Nodally integrated thermo-mechanical RKPM: Part I-Thermoelasticity. Comput Mech 68:795–820

    Article  MathSciNet  MATH  Google Scholar 

  21. Pasetto M, Baek J, Chen JS, Wei H, Roth MJ (2021) A Lagrangian/Semi-Lagrangian coupling approach for accelerated meshfree modelling of extreme deformation problems. Comput Methods Appl Mech Eng 381:113827

    Article  MathSciNet  MATH  Google Scholar 

  22. Krysl P, Belytschko T (1996) Analysis of thin plates by the element-free Galerkin method. Int J Solids Struct 33:3057–3080

    Article  MATH  Google Scholar 

  23. Wang D, Peng H (2013) A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates. Comput Mech 51:1013–1029

    Article  MathSciNet  MATH  Google Scholar 

  24. Amiri F, Millán D, Arroyo M, Silani M, Rabczuk T (2016) Fourth order phase-field model for local max-ent approximants applied to crack propagation. Comput Methods Appl Mech Eng 312:254–275

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu J, Wang D, Lin Z, Qi D (2020) An efficient gradient smoothing meshfree formulation for the fourth-order phase field modeling of brittle fracture. Comput Particle Mech 7:193–207

    Article  Google Scholar 

  26. Yan J, Li S, Kan X, Zhang A, Lai X (2020) Higher-order nonlocal theory of updated Lagrangian particle hydrodynamics (ULPH) and simulations of multiphase flows. Comput Methods Appl Mech Eng 368:113176

    Article  MathSciNet  MATH  Google Scholar 

  27. Yu H, Li S (2021) On approximation theory of nonlocal differential operators. Int J Numer Meth Eng 122:6984–7012

    Article  MathSciNet  Google Scholar 

  28. Askes H, Aifantis EC (2002) Numerical modeling of size effect with gradient elasticity-Formulation, meshless discretization and examples. Int J Fract 117:347–358

    Article  Google Scholar 

  29. Tang Z, Shen S, Atluri SN (2003) Analysis of materials with strain-gradient effects: a meshless local Petrov Galerkin (MLPG) approach, with nodal displacements only. Comput Model Eng Sci 4:177–196

    MATH  Google Scholar 

  30. Sansour C, Skatulla S (2009) A strain gradient generalized continuum approach for modelling elastic scale effects. Comput Methods Appl Mech Eng 198:1401–1412

    Article  MATH  Google Scholar 

  31. Alireza S, Farhang D, Mehrdad F, Zouheir F (2018) A new meshfree method for modeling strain gradient microbeams. J Braz Soc Mech Sci Eng 40:384

    Article  Google Scholar 

  32. Thai CH, Ferreira AJM, Nguyen-Xuan H, Phung-Van P (2021) A size dependent meshfree model for functionally graded plates based on the nonlocal strain gradient theory. Compos Struct 272:114169

    Article  Google Scholar 

  33. Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak form in meshfree methods. Comput Mech 23:219–230

    Article  MathSciNet  MATH  Google Scholar 

  34. Babuška I, Banerjee U, Osborn JE, Li QL (2008) Quadrature for meshless methods. Int J Numer Meth Eng 76:1434–1470

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Meth Eng 50:435–466

    Article  MATH  Google Scholar 

  36. Chen JS, Yoon S, Wu CT (2002) Nonlinear version of stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Meth Eng 53:2587–2615

    Article  MATH  Google Scholar 

  37. Wang D, Wu J (2016) An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Comput Methods Appl Mech Eng 298:485–519

    Article  MathSciNet  MATH  Google Scholar 

  38. Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139:49–74

    Article  MathSciNet  MATH  Google Scholar 

  39. Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng 193:1035–1063

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu CT, Chi SW, Koishi M, Wu Y (2016) Strain gradient stabilization with dual stress points for the meshfree nodal integration method in inelastic analyses. Int J Numer Meth Eng 107:3–30

    Article  MathSciNet  MATH  Google Scholar 

  41. Hillman M, Chen JS (2016) An accelerated, convergent and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Meth Eng 107:603–630

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang D, Chen JS (2004) Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation. Comput Methods Appl Mech Eng 193:1065–1083

    Article  MATH  Google Scholar 

  43. Wang D, Chen JS (2008) A Hermite reproducing kernel approximation for thin-plate analysis with sub-domain stabilized conforming integration. Int J Numer Meth Eng 74:368–390

    Article  MATH  Google Scholar 

  44. Guan PC, Chen JS, Wu Y, Teng H, Gaidos J, Hofstetter K, Alsaleh M (2009) Semi-Lagrangian reproducing kernel formulation and application to modeling earth moving operations. Mech Mater 41:670–683

    Article  Google Scholar 

  45. Wang D, Wang J, Wu J, Deng J, Sun M (2019) A three dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations. Front Struct Civ Eng 13:337–352

    Article  Google Scholar 

  46. Duan Q, Li X, Zhang H, Belytschko T (2012) Second-order accurate derivatives and integration schemes for meshfree methods. Int J Numer Meth Eng 92:399–424

    Article  MathSciNet  MATH  Google Scholar 

  47. Duan Q, Gao X, Wang B, Li X, Zhang H, Belytschko T, Shao Y (2014) Consistent element free Galerkin method. Int J Numer Meth Eng 99:79–101

    Article  MathSciNet  MATH  Google Scholar 

  48. Chen JS, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int J Numer Meth Eng 95:387–418

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang D, Wu J (2019) An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Comput Methods Appl Mech Eng 349:628–672

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang J, Wu J, Wang D (2020) A quasi-consistent integration method for efficient meshfree analysis of Helmholtz problems with plane wave basis functions. Eng Anal Boundary Elem 110:42–55

    Article  MathSciNet  MATH  Google Scholar 

  51. Wu J, Wang D (2021) An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. Comput Methods Appl Mech Eng 375:113631

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang B, Lu C, Fan C, Zhao M (2019) Consistent integration schemes for meshfree analysis of strain gradient elasticity. Comput Methods Appl Mech Eng 357:112601

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang B, Lu C, Fan C, Zhao M (2021) A stable and efficient meshfree Galerkin method with consistent integration schemes for strain gradient thin beams and plates. Thin-Walled Struct 153:106791

    Article  Google Scholar 

  54. Strang G, Fix G (2018) An analysis of the finite element method. Wellesley-Cambridge Press, UK

    MATH  Google Scholar 

  55. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Meth Fluids 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  56. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Methods Appl Mech Eng 139:195–227

    Article  MATH  Google Scholar 

  57. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, Part I-formulation and theory. Int J Numer Meth Eng 45:251–288

    Article  MATH  Google Scholar 

  58. Rogers DF (2001) An introduction to NURBS with historical perspective. Academic Press

    Google Scholar 

  59. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  60. Wachspress EL (1975) A rational finite element basis: mathematics in science and engineering. Elsevier, UK

    MATH  Google Scholar 

  61. Schrijver A (1998) Theory of linear and integer programming. John Wiley and Sons

    MATH  Google Scholar 

  62. Niiranen J, Khakalo S, Balobanov V, Niemi AH (2016) Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient–elastic bar and plane strain/stress problems. Comput Methods Appl Mech Eng 308:182–211

    Article  MathSciNet  MATH  Google Scholar 

  63. Zervos A, Papanicolopulos SA, Vardoulakis I (2009) Two finite-element discretizations for gradient elasticity. J Eng Mech-Asce 135:203–213

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The support of this work by the National Natural Science Foundation of China (12072302, 12102138) and the Natural Science Foundation of Fujian Province of China (2021J02003) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the reproducing kernel gradient smoothing integration using quartic meshfree approximation, the properties of different type 1D, 2D and 3D sample points as shown in Fig. 2 are described in Tables

Table 6 Properties for different type 1D sample points

6,

Table 7 Properties for different type 2D sample points

7,

Table 8 Properties for different type 3D sample points

8.

The three sets of independent equations arising from Eqs. (68) and (69) for 1D, 2D and 3D cases are attained as follows:

  • (1) 1D case

    $$ \left\{ {\begin{array}{*{20}l} {\sum\limits_{{S = {\mathcal{S}}_{2} }} {\omega_{S}^{b} \langle \hat{\delta }_{2} \rangle } = 1} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1 - 3} }} {\omega_{S}^{i} \langle 1} \rangle = 1} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1,3} }} {\omega_{S}^{i} \langle \xi_{1} \xi_{2} } \rangle = \frac{1}{6}} \hfill \\ {\sum\limits_{{S = {\mathcal{S}}_{1,3} }} {\omega_{S}^{i} \langle \xi_{1}^{2} \xi_{2}^{2} } \rangle = \frac{1}{30}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1,3} }} {\omega_{S}^{i} \langle \xi_{1}^{3} \xi_{2}^{3} } \rangle = \frac{1}{140}} \hfill & {} \hfill \\ \end{array} } \right. $$
    (82)
  • (2) 2D case

    $$ \left\{ {\begin{array}{*{20}l} {\sum\limits_{{S = {\mathcal{S}}_{2,3,5} }} {\omega_{S}^{b} \langle \hat{\delta }_{3} \rangle = 1} } \hfill & {\sum\limits_{{S = {\mathcal{S}}_{3,5} }}^{{}} {\omega_{S}^{b} \langle \xi_{1} \xi_{2} \hat{\delta }_{3} \rangle = \frac{1}{6}} } \hfill & {\sum\limits_{{S = {\mathcal{S}}_{3,5} }} {\omega_{S}^{b} \langle \xi_{1}^{2} \xi_{2}^{2} \hat{\delta }_{3} } \rangle = \frac{1}{30}} \hfill \\ {\sum\limits_{{S = {\mathcal{S}}_{3,5} }} {\omega_{S}^{b} \langle \xi_{1}^{3} \xi_{2}^{3} \hat{\delta }_{3} \rangle } = \frac{1}{140}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1 - 6} }} {\omega_{S}^{i} \langle 1} \rangle = 1} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1,3 - 6} }} {\omega_{S}^{i} \langle \xi_{1} \xi_{2} } \rangle = \frac{1}{12}} \hfill \\ {\sum\limits_{{S = {\mathcal{S}}_{1,4,6} }} {\omega_{S}^{i} \langle \xi_{1} \xi_{2} \xi_{3} } \rangle = \frac{1}{60}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} } \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1,3 - 6} }} {\omega_{S}^{i} \langle \xi_{1}^{2} \xi_{2}^{2} } \rangle = \frac{1}{90}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1,4,6} }} {\omega_{S}^{i} \langle \xi_{1}^{2} \xi_{2}^{2} \xi_{3}^{{}} } \rangle = \frac{1}{630}} \hfill \\ {\sum\limits_{{S = {\mathcal{S}}_{1,4,6} }} {\omega_{S}^{i} \langle \xi_{1}^{2} \xi_{2}^{2} \xi_{3}^{2} } \rangle = \frac{1}{2520}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1,3 - 6} }} {\omega_{S}^{i} \langle \xi_{1}^{3} \xi_{2}^{3} } \rangle = \frac{1}{560}} \hfill & {} \hfill \\ \end{array} } \right. $$
    (83)
  • (3) 3D case

    $$ \left\{ {\begin{array}{*{20}l} {\sum\limits_{{S = {\mathcal{S}}_{2,3,5,7,8,10} }} {\omega_{S}^{b} \langle \hat{\delta }_{4} \rangle } = 1} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{3,5,7,8,10} }} {\omega_{S}^{b} \langle \xi_{1} \xi_{2} \hat{\delta }_{4} \rangle } = \frac{1}{12}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{3,8,10} }} {\omega_{S}^{b} \langle \xi_{1}^{{}} \xi_{2}^{{}} \xi_{3}^{{}} \hat{\delta }_{4} \rangle } = \frac{1}{60}} \hfill \\ {\sum\limits_{{S = {\mathcal{S}}_{3,5,7,8,10} }} {\omega_{S}^{b} \langle \xi_{1}^{2} \xi_{2}^{2} \hat{\delta }_{4} \rangle } = \frac{1}{90}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{3,8,10} }} {\omega_{S}^{b} \langle \xi_{1}^{2} \xi_{2}^{2} \xi_{3}^{{}} \hat{\delta }_{4} \rangle } = \frac{1}{630}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{3,5,7,8,10} }} {\omega_{S}^{b} \langle \xi_{1}^{3} \xi_{2}^{3} \hat{\delta }_{4} \rangle } = \frac{1}{560}} \hfill \\ {\sum\limits_{{S = {\mathcal{S}}_{3,8,10} }} {\omega_{S}^{b} \langle \xi_{1}^{2} \xi_{2}^{2} \xi_{3}^{2} \hat{\delta }_{4} \rangle } = \frac{1}{2520}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{3,8,10} }} {\omega_{S}^{b} \langle \xi_{1}^{{}} \xi_{2}^{2} \xi_{3}^{4} \hat{\delta }_{4} \rangle } = \frac{1}{3780}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1 - 11} }} {\omega_{S}^{i} \langle 1\rangle } = 1} \hfill \\ {\sum\limits_{{S = {\mathcal{S}}_{1,3 - 11} }} {\omega_{S}^{i} \langle \xi_{1} \xi_{2} \rangle } = \frac{1}{20}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1,3,4,6,8 - 11} }} {\omega_{S}^{i} \langle \xi_{1} \xi_{2} \xi_{3} \rangle } = \frac{1}{120}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1,3 - 11} }} {\omega_{S}^{i} \langle \xi_{1}^{2} \xi_{2}^{2} \rangle } = \frac{1}{210}} \hfill \\ {\sum\limits_{{S = {\mathcal{S}}_{1,4,6,9,11} }} {\omega_{S}^{i} \langle \xi_{1} \xi_{2} \xi_{3} \xi_{4} \rangle } = \frac{1}{840}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1,3,4,6,8 - 11} }} {\omega_{S}^{i} \langle \xi_{1}^{2} \xi_{2}^{2} \xi_{3}^{{}} \rangle } = \frac{1}{1680}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1,3,4,6,8 - 11} }} {\omega_{S}^{i} \langle \xi_{1}^{2} \xi_{2}^{2} \xi_{3}^{2} \rangle } = \frac{1}{7560}} \hfill \\ {\sum\limits_{{S = {\mathcal{S}}_{1,3 - 11} }} {\omega_{S}^{i} \langle \xi_{1}^{3} \xi_{2}^{3} \rangle } = \frac{1}{1680}} \hfill & {\sum\limits_{{S = {\mathcal{S}}_{1,4,6,9,11} }} {\omega_{S}^{i} \langle \xi_{1}^{2} \xi_{2}^{2} \xi_{3}^{{}} \xi_{4}^{{}} \rangle } = \frac{1}{15120}} \hfill & {} \hfill \\ \end{array} } \right. $$
    (84)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Wu, J., Wang, D. et al. A unified reproducing kernel gradient smoothing Galerkin meshfree approach to strain gradient elasticity. Comput Mech 70, 73–100 (2022). https://doi.org/10.1007/s00466-022-02156-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02156-z

Keywords

Navigation