An analytical relationship between the ZS and reference states of straight-tube segments was given in [67]. The relationship was called “straight-tube ZSS template” in [69] and was extended to curved tubes. These were for the EBZSS. Here we directly build the IPBZSS instead of building the EBZSS first. This is simpler because with isogeometric discretization, especially with T-spline discretization, specifying conditions at integration points is far more straightforward than imposing conditions on control points.
We start with the artery inner surface, which is what the medical images show. Typically, we cannot discern the wall thickness from the medical image. Therefore we first build the inner-surface mesh with T-splines. Then we build a T-spline volume mesh by extruding the surface elements by an estimated thickness.
In our notation here, \(\mathbf {x}\) will now imply \(\mathbf {X}_\mathrm {REF}\), which is our “target” shape, and \(\mathbf {X}\) will imply \(\mathbf {X}_0\). We explain the method in the context of one element in the thickness direction. Extending the method to multiple elements is straightforward.
Inner-surface coordinates in the target state
The coordinate system we have here is similar to the one used for the shell modeling in [70]. We note that the “midsurface” of the shell formulation has been shifted to the inner surface here, and \(\overline{\bullet }\) indicates the inner surface. The basis vectors are
$$\begin{aligned} \overline{\mathbf {g}}_\alpha&= \frac{\partial \overline{\mathbf {x}}}{\partial \xi ^{\alpha }}, \end{aligned}$$
(38)
where \(\alpha = 1, \ldots , {n_{\mathrm {sd}}}-1\), and the third direction is
$$\begin{aligned} \mathbf {n}&= \frac{ \overline{\mathbf {g}}_1 \times \overline{\mathbf {g}}_2 }{ \left\| \overline{\mathbf {g}}_1 \times \overline{\mathbf {g}}_2 \right\| } . \end{aligned}$$
(39)
The second fundamental form is defined as
$$\begin{aligned} \overline{b}_{\alpha \beta }&= \frac{\partial \overline{\mathbf {g}}_\alpha }{\partial \xi ^{\beta }} \cdot \mathbf {n}, \end{aligned}$$
(40)
and the curvature tensor is
$$\begin{aligned} \hat{\pmb {\kappa }}&= \underbrace{ - \overline{b}_{\alpha \beta } }_{\hat{\kappa }_{\alpha \beta }} \overline{\mathbf {g}}^{\alpha } \overline{\mathbf {g}}^{\beta } . \end{aligned}$$
(41)
Clearly, \(\hat{\pmb {\kappa }}\) is symmetric.
For a given unit vector \(\mathbf {t}\) on the surface, we obtain the curvature \(\hat{\kappa }\) as
$$\begin{aligned} \hat{\kappa }&= \mathbf {t} \cdot \hat{\pmb {\kappa }}\cdot \mathbf {t} . \end{aligned}$$
(42)
If \(\mathbf {t}\) is a principal direction,
$$\begin{aligned} \hat{\pmb {\kappa }}\cdot \mathbf {t}&= \hat{\kappa }\mathbf {t} , \end{aligned}$$
(43)
and \(\hat{\kappa }\) is the corresponding principal curvature. The eigenvector can be expressed as
$$\begin{aligned} \mathbf {t}&= t^\beta \overline{\mathbf {g}}_{\beta }. \end{aligned}$$
(44)
Substituting this into Eq. (43) and inner-producting with \(\overline{\mathbf {g}}^\alpha \), we obtain
$$\begin{aligned} \overline{g}_{\gamma \alpha } \left( \hat{\kappa }^\alpha _{\bullet \beta } - \hat{\kappa }\delta ^{\alpha }_{\beta } \right) t^{\beta }&=0, \end{aligned}$$
(45)
where the mixed components indicate
$$\begin{aligned} \hat{\pmb {\kappa }}&= \hat{\kappa }^\alpha _{\bullet \beta } \overline{\mathbf {g}}_\alpha \overline{\mathbf {g}}^\beta . \end{aligned}$$
(46)
Since the inverse of \(\left[ \overline{g}_{\gamma \alpha }\right] \) exists,
$$\begin{aligned} \det \left[ \hat{\kappa }^\alpha _{\bullet \beta } - \hat{\kappa }\delta ^{\alpha }_{\beta } \right]&=0, \end{aligned}$$
(47)
\(\hat{\kappa }\) is an eigenvalue of the matrix defined by the mixed components \(\hat{\kappa }^\alpha _{\bullet \beta }\), and we will call the two eigenvalues \(\hat{\kappa }_1\) and \(\hat{\kappa }_2\). For \(\hat{\kappa }_1 > \hat{\kappa }_2\) we obtain the corresponding eigenvectors:
$$\begin{aligned} \mathbf {t}_1&= \left( t_1\right) ^\beta \overline{\mathbf {g}}_\beta , \end{aligned}$$
(48)
$$\begin{aligned} \mathbf {t}_2&= \left( t_2\right) ^\beta \overline{\mathbf {g}}_\beta , \end{aligned}$$
(49)
where \(\mathbf {t}_1\) and \(\mathbf {t}_2\) are unit vectors. From Eq. (43), we write
$$\begin{aligned} \hat{\pmb {\kappa }}\cdot \mathbf {t}_1&= \hat{\kappa }_1\mathbf {t}_1 , \end{aligned}$$
(50)
$$\begin{aligned} \hat{\pmb {\kappa }}\cdot \mathbf {t}_2&= \hat{\kappa }_2 \mathbf {t}_2 . \end{aligned}$$
(51)
Since \(\hat{\pmb {\kappa }}\) is symmetric,
$$\begin{aligned} \mathbf {t}_2 \cdot \hat{\pmb {\kappa }}\cdot \mathbf {t}_1&= \mathbf {t}_1 \cdot \hat{\pmb {\kappa }}\cdot \mathbf {t}_2 . \end{aligned}$$
(52)
Substituting Eqs. (50) and (51) into this, we obtain
$$\begin{aligned} \hat{\kappa }_1 \mathbf {t}_1 \cdot \mathbf {t}_2&= \hat{\kappa }_2 \mathbf {t}_1 \cdot \mathbf {t}_2. \end{aligned}$$
(53)
Thus, the two vectors are orthonormal, and we can express the curvature tensor as
$$\begin{aligned} \hat{\pmb {\kappa }}&= \hat{\kappa }_1 \mathbf {t}_1 \mathbf {t}_1 + \hat{\kappa }_2 \mathbf {t}_2 \mathbf {t}_2 . \end{aligned}$$
(54)
When \(\hat{\kappa }_1 = \hat{\kappa }_2\), an arbitrary orthonormal set of \(\mathbf {t}_1\) and \(\mathbf {t}_2\) can be used in the above equation.
For more details on calculating the eigenvalues and eigenvectors, see Appendix A.
Inner-surface coordinates in the ZSS
Since the principal curvature directions \(\mathbf {t}_1\) and \(\mathbf {t}_2\) of the target shape are orthogonal to each other, we can build the ZSS shape using those directions. The basis vectors on the inner surface in the ZSS are
$$\begin{aligned} \overline{\mathbf {G}}_\alpha&= \frac{\partial \overline{\mathbf {X}}}{\partial \xi ^{\alpha }}, \end{aligned}$$
(55)
and the third direction is
$$\begin{aligned} \mathbf {N}&= \frac{ \overline{\mathbf {G}}_1 \times \overline{\mathbf {G}}_2 }{ \left\| \overline{\mathbf {G}}_1 \times \overline{\mathbf {G}}_2 \right\| } . \end{aligned}$$
(56)
The stretches corresponding to those directions will be \(\hat{\lambda }_1\) and \(\hat{\lambda }_2\). Then the ZSS basis vectors are calculated from
$$\begin{aligned} \hat{\lambda }_1 \mathbf {t}_1&= \mathbf {F} \cdot \mathbf {t}_1, \end{aligned}$$
(57)
$$\begin{aligned} \hat{\lambda }_2 \mathbf {t}_2&= \mathbf {F} \cdot \mathbf {t}_2. \end{aligned}$$
(58)
That is
$$\begin{aligned} \hat{\lambda }_1 \mathbf {F}^{-1} \cdot \mathbf {t}_1&= \mathbf {t}_1, \end{aligned}$$
(59)
$$\begin{aligned} \hat{\lambda }_2 \mathbf {F}^{-1} \cdot \mathbf {t}_2&= \mathbf {t}_2. \end{aligned}$$
(60)
Because the third direction is orthogonal to \(\mathbf {t}_1\) and \(\mathbf {t}_2\), we can reduce these equations to
$$\begin{aligned} \hat{\lambda }_1 \overline{\mathbf {G}}_\beta \overline{\mathbf {g}}^\beta \cdot \mathbf {t}_1&= \mathbf {t}_1, \end{aligned}$$
(61)
$$\begin{aligned} \hat{\lambda }_2 \overline{\mathbf {G}}_\beta \overline{\mathbf {g}}^\beta \cdot \mathbf {t}_2&= \mathbf {t}_2. \end{aligned}$$
(62)
Substituting Eqs. (48) and (49) into these, we get
$$\begin{aligned} \hat{\lambda }_1 \left( {t}_1\right) ^\alpha \overline{\mathbf {G}}_\alpha&= \left( {t}_1\right) ^\alpha \overline{\mathbf {g}}_\alpha , \end{aligned}$$
(63)
$$\begin{aligned} \hat{\lambda }_2 \left( {t}_2\right) ^\alpha \overline{\mathbf {G}}_\alpha&= \left( {t}_2\right) ^\alpha \overline{\mathbf {g}}_\alpha . \end{aligned}$$
(64)
This can also be written as
$$\begin{aligned} \begin{bmatrix} \hat{\lambda }_1&\quad 0 \\ 0&\quad \hat{\lambda }_2 \\ \end{bmatrix} \begin{bmatrix} \left( {t}_1\right) ^1&\quad \left( {t}_1\right) ^2 \\ \left( {t}_2\right) ^1&\quad \left( {t}_2\right) ^2 \\ \end{bmatrix} \begin{bmatrix} \overline{\mathbf {G}}_1 \\ \overline{\mathbf {G}}_2 \\ \end{bmatrix}&= \begin{bmatrix} \left( {t}_1\right) ^1&\quad \left( {t}_1\right) ^2 \\ \left( {t}_2\right) ^1&\quad \left( {t}_2\right) ^2 \\ \end{bmatrix} \begin{bmatrix} \overline{\mathbf {g}}_1 \\ \overline{\mathbf {g}}_2 \\ \end{bmatrix}, \end{aligned}$$
(65)
and from that we calculate the basis vectors as
$$\begin{aligned} \begin{bmatrix} \overline{\mathbf {G}}_1 \\ \overline{\mathbf {G}}_2 \\ \end{bmatrix}&= \begin{bmatrix} \left( {t}_1\right) ^1&\quad \left( {t}_1\right) ^2 \\ \left( {t}_2\right) ^1&\quad \left( {t}_2\right) ^2 \\ \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{\hat{\lambda }_1}&\quad 0 \\ 0&\quad \frac{1}{\hat{\lambda }_2} \\ \end{bmatrix} \begin{bmatrix} \left( {t}_1\right) ^1&\quad \left( {t}_1\right) ^2 \\ \left( {t}_2\right) ^1&\quad \left( {t}_2\right) ^2 \\ \end{bmatrix} \begin{bmatrix} \overline{\mathbf {g}}_1 \\ \overline{\mathbf {g}}_2 \\ \end{bmatrix}. \end{aligned}$$
(66)
Wall coordinates in the target state
The position in the target configuration is
$$\begin{aligned} \mathbf {x}&= \overline{\mathbf {x}} + \mathbf {n}\vartheta , \end{aligned}$$
(67)
where \(0 \le \vartheta \le h_\mathrm {th}\), and \(h_\mathrm {th}\) is the wall thickness in the target configuration. The basis vectors will vary along the thickness direction as
$$\begin{aligned} \mathbf {g}_\alpha&= \frac{\partial \mathbf {x}}{\partial \xi ^\alpha } \end{aligned}$$
(68)
$$\begin{aligned}&= \overline{\mathbf {g}}_\alpha + \frac{\partial \mathbf {n}}{\partial \xi ^\alpha } \vartheta \end{aligned}$$
(69)
$$\begin{aligned}&= \overline{\mathbf {g}}_\alpha - \overline{b}_{\alpha \gamma } \overline{\mathbf {g}}^\gamma \vartheta . \end{aligned}$$
(70)
The second and third lines are explained in Appendix 1. The third coordinate is mapped as
$$\begin{aligned} \vartheta&= \frac{1+\xi ^3}{2} h_\mathrm {th}, \end{aligned}$$
(71)
where \(-1 \le \xi ^3 \le 1\). The basis vector in the third direction is constant as
$$\begin{aligned} \mathbf {g}_3&= \frac{ h_\mathrm {th}}{2} \mathbf {n}, \end{aligned}$$
(72)
and
$$\begin{aligned} \mathbf {g}^3&= \frac{2}{h_\mathrm {th}} \mathbf {n}. \end{aligned}$$
(73)
With that, the components of the metric tensor are
$$\begin{aligned} g_{\alpha \beta }&= \overline{g}_{\alpha \beta } - 2 \overline{b}_{\alpha \beta } \vartheta + \overline{b}_{\alpha \gamma } \overline{g}^{\gamma \delta } \overline{b}_{\beta \delta } \vartheta ^2, \end{aligned}$$
(74)
$$\begin{aligned} g_{3 \alpha }&= 0, \end{aligned}$$
(75)
$$\begin{aligned} g_{\alpha 3}&= 0, \end{aligned}$$
(76)
$$\begin{aligned} g_{33}&= \frac{h_\mathrm {th}^2}{4} . \end{aligned}$$
(77)
Wall coordinates in the ZSS
The position in the ZSS configuration is
$$\begin{aligned} \mathbf {X}&= \overline{\mathbf {X}} + \mathbf {N} \vartheta _0, \end{aligned}$$
(78)
where \(0 \le \vartheta _0 \le \left( h_\mathrm {th}\right) _0\), and \(\left( h_\mathrm {th}\right) _0\) is the wall thickness in the ZSS configuration. The basis vectors will vary along the thickness direction as
$$\begin{aligned} \mathbf {G}_\alpha&= \frac{\partial \mathbf {X}}{\partial \xi ^\alpha } \end{aligned}$$
(79)
$$\begin{aligned}&= \overline{\mathbf {G}}_\alpha + \frac{\partial \mathbf {N}}{\partial \xi ^\alpha } \vartheta _0 \end{aligned}$$
(80)
$$\begin{aligned}&= \overline{\mathbf {G}}_\alpha - \overline{B}_{\alpha \gamma } \overline{\mathbf {G}}^\gamma \vartheta _0 . \end{aligned}$$
(81)
The curvature tensor in the ZSS configuration is
$$\begin{aligned} \hat{\pmb {\kappa }}_0&= \left( \hat{\kappa }_0\right) _1 \mathbf {t}_1 \mathbf {t}_1 + \left( \hat{\kappa }_0\right) _2 \mathbf {t}_2 \mathbf {t}_2 . \end{aligned}$$
(82)
From that,
$$\begin{aligned} \overline{B}_{\alpha \beta }&= - \hat{\pmb {\kappa }}_0 : \overline{\mathbf {G}}_\alpha \overline{\mathbf {G}}_\beta \end{aligned}$$
(83)
$$\begin{aligned}&= - \left( \hat{\kappa }_0\right) _1 \left( \mathbf {t}_1 \cdot \overline{\mathbf {G}}_\alpha \right) \left( \mathbf {t}_1 \cdot \overline{\mathbf {G}}_\beta \right) \nonumber \\&\quad - \left( \hat{\kappa }_0\right) _2 \left( \mathbf {t}_2 \cdot \overline{\mathbf {G}}_\alpha \right) \left( \mathbf {t}_2 \cdot \overline{\mathbf {G}}_\beta \right) . \end{aligned}$$
(84)
Similar to what we had for \(\mathbf {t}_1\) and \(\mathbf {t}_2\),
$$\begin{aligned} \lambda _3 \mathbf {F}^{-1} \cdot \mathbf {n}&= \mathbf {n}, \end{aligned}$$
(85)
which becomes
$$\begin{aligned} \lambda _3 \mathbf {G}_3 \mathbf {g}^3 \cdot \mathbf {n}&= \mathbf {n}. \end{aligned}$$
(86)
We substitute Eq. (73) into this and obtain
$$\begin{aligned} \mathbf {G}_3 = \frac{h_\mathrm {th}}{2 \lambda _3} \mathbf {n}, \end{aligned}$$
(87)
and
$$\begin{aligned} \mathbf {G}^3 = \frac{2 \lambda _3}{h_\mathrm {th}} \mathbf {n}. \end{aligned}$$
(88)
Calculating the components of the ZSS metric tensor at each integration point
For an integration point \(\pmb {\xi }\), we can obtain the components of the metric tensor as
$$\begin{aligned} G_{\alpha \beta }&= \overline{G}_{\alpha \beta } - 2 \overline{B}_{\alpha \beta } \vartheta _0 + \overline{B}_{\alpha \gamma } \overline{G}^{\gamma \delta } \overline{B}_{\beta \delta } \vartheta _0^2 , \end{aligned}$$
(89)
$$\begin{aligned} G_{3 \alpha }&= 0, \end{aligned}$$
(90)
$$\begin{aligned} G_{\alpha 3}&= 0, \end{aligned}$$
(91)
$$\begin{aligned} G_{33}&= \frac{h_\mathrm {th}^2}{4 \lambda _3^2} . \end{aligned}$$
(92)
The third coordinate can be obtained from
$$\begin{aligned} \vartheta _0&= \int _{-1}^{\xi ^3} \frac{h_\mathrm {th}}{2 \lambda _3} \mathrm {d}\xi ^3. \end{aligned}$$
(93)
Assuming incompressible material, \(J=1\),
$$\begin{aligned} \lambda _3&= \frac{A_0}{A}, \end{aligned}$$
(94)
where
$$\begin{aligned} A^2&= \det \left[ g_{\alpha \beta }\right] , \end{aligned}$$
(95)
$$\begin{aligned} A^2_0&= \det \left[ G_{\alpha \beta }\right] . \end{aligned}$$
(96)
The components of the matrix tensors are given by Eqs. (74) and (89).
Design of the ZSS
The design parameters are the principal curvatures \(\left( \hat{\kappa }_0\right) _1\) and \(\left( \hat{\kappa }_0\right) _2\), and the stretches \(\hat{\lambda }_1\) and \(\hat{\lambda }_2\) for each principal curvature direction. Those parameters can be determined from \(\hat{\kappa }_1\) and \(\hat{\kappa }_2\) of the target configuration.
As proposed in [69], the two principal directions are seen as circumferential and longitudinal directions, and \(\hat{\kappa }_1\) is in the circumferential direction, giving us
$$\begin{aligned} \left( \hat{\kappa }_0\right) _1 = \frac{2 \pi - \phi }{2 \pi } \hat{\kappa }_1. \end{aligned}$$
(97)
Here \(\phi \) is the opening angle, which is seen after a longitudinal cut, based on artery experimental data [71]. The stretch in that direction, \(\hat{\lambda }_1\), corresponds to \(\lambda _\theta \) in [69] and that is determined from the 2D computations in [69]. We assume that in the longitudinal direction the ZSS configuration has zero curvature, \(\left( \hat{\kappa }_0\right) _2 = 0\). The stretch in that direction, \(\hat{\lambda }_2\), corresponds to \(\lambda _z\) in [69]. If at an integration point \(\hat{\kappa }_2 \approx \hat{\kappa }_1\), we set \(\left( \hat{\kappa }_0\right) _2 = \left( \hat{\kappa }_0\right) _1\) and \(\hat{\lambda }_2 = \hat{\lambda }_1\). That makes the assignment of the principal directions less consequential.