Skip to main content
Log in

Static and free-vibration analyses of cracks in thin-shell structures based on an isogeometric-meshfree coupling approach

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper develops a coupling approach which integrates the meshfree method and isogeometric analysis (IGA) for static and free-vibration analyses of cracks in thin-shell structures. In this approach, the domain surrounding the cracks is represented by the meshfree method while the rest domain is meshed by IGA. The present approach is capable of preserving geometry exactness and high continuity of IGA. The local refinement is achieved by adding the nodes along the background cells in the meshfree domain. Moreover, the equivalent domain integral technique for three-dimensional problems is derived from the additional Kirchhoff–Love theory to compute the J-integral for the thin-shell model. The proposed approach is able to address the problems involving through-the-thickness cracks without using additional rotational degrees of freedom, which facilitates the enrichment strategy for crack tips. The crack tip enrichment effects and the stress distribution and displacements around the crack tips are investigated. Free vibrations of cracks in thin shells are also analyzed. Numerical examples are presented to demonstrate the accuracy and computational efficiency of the coupling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: part I. Three-dimensional shells. Comput Methods Appl Mech Eng 26:331–362

    Article  Google Scholar 

  2. Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: part II. Two-dimensional shells. Comput Methods Appl Mech Eng 27:167–181

    Article  Google Scholar 

  3. Bischoff M, Bletzinger K-U, Wall WA, Ramm E (2004) Models and Finite Elements for Thin-Walled Structures. Wiley, New York

    Book  Google Scholar 

  4. Bathe KJ, Dvorkin E (1983) Our discrete Kirchhoff and isoparametric shell elements for non-linear analysis—an assessment. Comput Struct 16:89–98

    Article  Google Scholar 

  5. Krysl P, Belytschko T (1996) Analysis of thin shells by the element free Galerkin method. Int J Solids Struct 33(20–22):3057–3080

    Article  Google Scholar 

  6. Cirak F, Ortiz M, Schröder P (2000) Subdivision surfaces: a new paradigm for thin shell analysis. Int J Numer Methods Eng 47:2039–2072

    Article  Google Scholar 

  7. Noëls L, Radovitzky R (2008) A new discontinuous Galerkin method for Kirchhoff–Love shells. Comput Methods Appl Mech Eng 197:2901–2929

    Article  MathSciNet  Google Scholar 

  8. Chen L, Nguyen-Thanh N, Nguyen-Xuan H, Rabczuk T, Bordas S, Limbert G (2014) Explicit finite deformation analysis of isogeometric membranes. Comput Methods Appl Mech Eng 277:104–130

    Article  MathSciNet  Google Scholar 

  9. Wang D, Chen JS (2004) Locking-free stabilized conforming nodal integration for meshfree Mindlin–Reissner plate formulation. Comput Methods Appl Mech Eng 193:1065–1083

    Article  Google Scholar 

  10. Chen JS, Wang D (2006) A constrained reproducing kernel particle formulation for shear deformable shell in cartesian coordinates. Int J Numer Methods Eng 68:151–172

    Article  Google Scholar 

  11. Ubach P-A, Onate E (2010) New rotation-free finite element shell triangle accurately using geometrical data. Comput Methods Appl Mech Eng 199(5–8):383–391

    Article  Google Scholar 

  12. Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198(2):165–177

    Article  Google Scholar 

  13. Nguyen-Thanh N, Thai-Hoang C, Nguyen-Xuan H, Rabczuk T (2010) A smoothed finite element method for the static and free vibration analysis of shells. J Civ Eng Archit 4:17–29

    Google Scholar 

  14. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  15. Rabczuk T, Xiao SP, Sauer M (2006) Coupling of meshfree methods with finite elements: basic concepts and test results. Commun Numer Methods Eng 22:1031–1065

    Article  Google Scholar 

  16. Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39:743–760

    Article  Google Scholar 

  17. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree methods for arbitrary evovling cracks. Int J Numer Methods Eng 61:2316–2343

    Article  Google Scholar 

  18. Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2D and 3D. Int J Numer Methods Eng 63(11):1559–1582

    Article  MathSciNet  Google Scholar 

  19. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79:763–813

    Article  MathSciNet  Google Scholar 

  20. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30(1):543–574

    Article  Google Scholar 

  21. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  Google Scholar 

  22. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    Article  MathSciNet  Google Scholar 

  23. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679

    Article  MathSciNet  Google Scholar 

  24. Chen JS, Pan C, Liu WK, Wu CT (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139:195–227

    Article  MathSciNet  Google Scholar 

  25. Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods methodology and convergence. Comput Methods Appl Mech Eng 143:113–154

    Article  MathSciNet  Google Scholar 

  26. Rabczuk T, Areias P, Belytschko T (2007) A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 72(5):524–548

    Article  MathSciNet  Google Scholar 

  27. Rabczuk T, Areias P (2006) A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Comput Model Eng Sci 16(2):115–130

    Google Scholar 

  28. Qian D, Eason T, Li S, Liu WK (2008) Meshfree simulation of failure modes in thin cylinder subjected to combined loads of internal pressure and localized heat. Int J Numer Methods Eng 76:1159–1180

    Article  Google Scholar 

  29. Ren B, Li S (2012) Modeling and simulation of large-scale ductile fracture in plates and shells. Int J Solids Struct 49:2373–2393

    Article  Google Scholar 

  30. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  Google Scholar 

  31. Hughes TJR, Reali A, Sangalli G (2010) Efficient quadrature for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 199:301–313

    Article  MathSciNet  Google Scholar 

  32. Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations und severe mesh distortion. Comput Methods Appl Mech Eng 199:357–373

    Article  Google Scholar 

  33. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scottand MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263

    Article  MathSciNet  Google Scholar 

  34. Nguyen-Thanh N, Nguyen-Xuan H, Bordas S, Rabczuk T (2010) Isogeometric finite element analysis using polynomial splines over hierarchical T-meshes. Mater Sci Eng 10:1–10

    MATH  Google Scholar 

  35. Nguyen-Thanh N, Nguyen-Xuan H, Bordas S, Rabczuk T (2011) Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput Methods Appl Mech Eng 200(21–22):1892–1908

    Article  MathSciNet  Google Scholar 

  36. Schillinger D, Dede L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJR (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249–252:116–150

    Article  MathSciNet  Google Scholar 

  37. Kruse R, Nguyen-Thanh N, Lorenzis L, Hughes TJR (2015) Isogeometric collocation for large deformation elasticity and frictional contact problems. Comput Methods Appl Mech Eng 296:73–112

    Article  MathSciNet  Google Scholar 

  38. Nguyen-Thanh N, Zhou K, Zhuang X, Areias P, Nguyen-Xuan H, Bazilevs Y, Rabczuk T (2017) Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling. Comput Methods Appl Mech Eng 316:1157–1178

    Article  MathSciNet  Google Scholar 

  39. Tan P, Nguyen-Thanh N, Zhou K (2017) Extended isogeometric analysis based on Bézier extraction for an FGM plate by using the two-variable refined plate theory. Theor Appl Fract Mech 89:127–138

    Article  Google Scholar 

  40. Benson DJ, Bazilevs Y, De Luycker E, Hsu M-C, Scott M, Hughes TJR, Belytschko T (2010) A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM. Int J Numer Methods Eng 83:765–785

    MathSciNet  MATH  Google Scholar 

  41. De Luycker E, Benson DJ, Belytschko T, Bazilevs Y, Hsu MC (2011) X-FEM in isogeometric analysis for linear fracture mechanics. Int J Numer Methods Eng 87:541–565

    Article  MathSciNet  Google Scholar 

  42. Verhoosel CV, Scott MA, de Borst R, Hughes TJR (2011) An isogeometric approach to cohesive zone modeling. Int J Numer Methods Eng 87:336–360

    Article  Google Scholar 

  43. Ghorashi SS, Valizadeh N, Mohammadi S (2012) Extended isogeometric analysis for simulation of stationary and propagating cracks. Int J Numer Methods Eng 89:1069–1101

    Article  MathSciNet  Google Scholar 

  44. Nguyen-Thanh N, Valizadeh N, Nguyen MN, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, Lorenzis L, Rabczuk T (2015) An extended isogeometric thin shell analysis based on kirchhoff–Love theory. Comput Methods Appl Mech Eng 284:265–291

    Article  MathSciNet  Google Scholar 

  45. Nguyen-Thanh N, Zhou K (2017) Extended isogeometric analysis based on PHT-splines for crack propagation near inclusions. Int J Numer Methods Eng 112:1777–1800

    Article  MathSciNet  Google Scholar 

  46. Wang D, Zhang H (2014) A consistently coupled isogeometric-meshfree method. Comput Methods Appl Mech Eng 268:843–870

    Article  MathSciNet  Google Scholar 

  47. Rosolen A, Arroyo M (2013) Blending isogeometric analysis and local maximum entropy meshfree approximants. Comput Methods Appl Mech Eng 264:95–107

    Article  Google Scholar 

  48. Valizadeh N, Bazilevs Y, Chen JS, Rabczuk T (2015) A coupled IGA-Meshfree discretization of arbitrary order of accuracy and without global geometry parameterization. Comput Methods Appl Mech Eng 293:20–37

    Article  MathSciNet  Google Scholar 

  49. Zhang H, Wang D (2017) Reproducing kernel formulation of B-spline and NURBS basis functions: a meshfree local refnement strategy for isogeometric analysis. Comput Methods Appl Mech Eng 320:474–508

    Article  Google Scholar 

  50. Nguyen-Thanh N, Huang H, Zhou K (2018) An isogeometric-meshfree coupling approach for analysis of cracks. Int J Numer Methods Eng 113:1630–1651

    Article  MathSciNet  Google Scholar 

  51. Levin D (1998) The approximation power of moving least-squares. Math Comput Am Math Soc 67(224):1517–1531

    Article  MathSciNet  Google Scholar 

  52. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer Science & Business Media, Berlin

    Google Scholar 

  53. Dung NT, Wells GN (2008) Geometrically nonlinear formulation for thin shells without rotation degrees of freedom. Comput Methods Appl Mech Eng 197(33):2778–2788

    Article  MathSciNet  Google Scholar 

  54. Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  55. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:133–150

    Article  Google Scholar 

  56. Chau-Dinh T, Zi G, Lee PS, Rabczuk T, Song JH (2012) Phantom-node method for shell models with arbitrary cracks. Comput Struct 92–93:242–256

    Article  Google Scholar 

  57. Nikishkov GP, Atluri SN (1987) Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the “Equivalent Domain Integral” method. Int J Numer Methods Eng 24:1801–1821

    Article  Google Scholar 

  58. Cirak F, Ortiz M, Schroder P (2000) Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. Int J Numer Methods Eng 47(12):2039–2072

    Article  Google Scholar 

  59. Tada H, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook. ASME Press, New York

    Book  Google Scholar 

  60. Sosa HA, Eischen JW (1986) Computation of stress intensity factors for plate bending via a path-independent integral. Eng Fract Mech 25:451–462

    Article  Google Scholar 

  61. Huh NS, SHIM DJ, CHOI S, PARK KB (2008) Stress intensity factors and crack opening displacements for slanted axial through-wall cracks in pressurized pipes. Fatigue Fract Eng Mater Struct 31:428–440

    Article  Google Scholar 

  62. Le Port P, de Lorenzi HG, Kumar V, German MD (1987) Virtual crack extension method for energy release rate calculations in flawed thin shell structures. J Press Vessel Technol ASME 109:101–107

    Article  Google Scholar 

  63. Folias ES (1968) On the effect of initial curvature on cracked flat sheets. Int J Fract Mech 5:327–346

    Google Scholar 

  64. Jr Sander JL (1982) Circumferential through-cracks in cylindrical shells under tension. J Appl Mech ASME 49:103–107

    Article  Google Scholar 

  65. Folias ES (1969) On the effect of initial curvature on cracked flat sheets. Int J Fract Mech 5:327–346

    Article  Google Scholar 

  66. Zhang H, Wu J, Wang D (2015) Free vibration analysis of cracked thin plates by quasi-convex coupled isogeometric-meshfree method. Front Struct Civ Eng 9:405–419

    Article  Google Scholar 

  67. Stahl B, Keer LM (1972) Vibration and stability of cracked rectangular plates. Int J Solids Struct 8:69–91

    Article  Google Scholar 

  68. Zehnder AT, Viz MJ (2005) Fracture mechanics of thin plates and shells under combined membrane, bending, and twisting loads. Appl Mech Rev ASME 58:37–48

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the Singapore Maritime Institute (Grant No. SMI-2014-MA11) and the Ministry of Education, Singapore (Academic Research Fund, TIER 1-RG174/15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nhon Nguyen-Thanh or Kun Zhou.

Appendices

Appendix A: Derivatives of strain variables

The membrane strains and bending strains can be expressed when second order derivatives of displacements are emitted

$$\begin{aligned} \delta {\varepsilon _{\alpha \beta }}= & {} \frac{1}{2}\left( {\delta {\mathbf{{u}}_{,\alpha }} \cdot {\mathbf{{G}}_\beta } + \delta {\mathbf{{u}}_{,\beta }} \cdot {\mathbf{{G}}_\alpha }} \right) , \\ \delta {\kappa _{\alpha \beta }}= & {} -\,\delta {\mathbf{{u}}_{,\alpha \beta }} \cdot {\mathbf{{G}}_3} + \frac{1}{{{{\bar{j}}_0}}}\left( \delta {\mathbf{{u}}_{,1}} \cdot \left( {{\mathbf{{G}}_{\alpha ,\beta }} \times {\mathbf{{G}}_2}} \right) \right. \\&\quad \left. - \delta {\mathbf{{u}}_{,2}} \cdot \left( {{\mathbf{{G}}_{\alpha ,\beta }} \times {\mathbf{{G}}_1}} \right) \right) \\&\quad + \frac{{{\mathbf{{G}}_{\alpha ,\beta }} \cdot {\mathbf{{G}}_3}}}{{{{\bar{j}}_0}}}\left( {\delta {\mathbf{{u}}_{,1}} \cdot \left( {{\mathbf{{G}}_2} \times {\mathbf{{G}}_3}} \right) + \delta {\mathbf{{u}}_{,2}} \cdot \left( {{\mathbf{{G}}_3} \times {\mathbf{{G}}_1}} \right) } \right) \end{aligned}$$

The first derivative of membrane strains with respect to the nodal displacement \({u_r}\) is given as follows:

$$\begin{aligned} \frac{{\partial {\varepsilon _{\alpha \beta }}}}{{\partial {u_r}}} = \frac{1}{2}{\left( {{\mathbf{{g}}_\alpha } \cdot {\mathbf{{g}}_\beta } - {\mathbf{{G}}_\alpha } \cdot {\mathbf{{G}}_\beta }} \right) _{,r}} = \frac{1}{2}\left( {{\mathbf{{g}}_{\alpha ,r}} \cdot {\mathbf{{g}}_\beta } + {\mathbf{{g}}_\alpha } \cdot {\mathbf{{g}}_{\beta ,r}}} \right) . \end{aligned}$$

The second derivative of membrane strains is calculated as

$$\begin{aligned} \frac{{{\partial ^2}{\varepsilon _{\alpha \beta }}}}{{\partial {u_r}\partial {u_s}}} = \frac{1}{2}\left( {{\mathbf{{g}}_{\alpha ,r}} \cdot {\mathbf{{g}}_{\beta ,s}} + {\mathbf{{g}}_{\alpha ,s}} \cdot {\mathbf{{g}}_{\beta ,r}}} \right) . \end{aligned}$$

The first derivative of the normal vector \({\mathbf{{g}}_3}\) with respect to the nodal displacement \({u_r}\) is given as follows:

$$\begin{aligned} {\mathbf{{g}}_{3,r}} = \frac{{{{\vec {\mathbf{g}}}_{3,r}}{{\bar{g}}_3} - {{\vec {\mathbf{g}}}_3}{{\bar{g}}_{3,r}}}}{{{{\bar{g}}_3}^2}},\quad {{{\bar{g}}_3} = \left| {{g_1} \times {g_2}} \right| } ,\quad {{\vec {\mathbf{g}}}_3} = {\mathbf{{g}}_1} \times {\mathbf{{g}}_2}, \end{aligned}$$

where \({\bar{g}_3}\) represents the length of \({\vec {\mathbf{g}}_3}\), and the derivatives of \({\bar{g}_{3,r}}\) and \({\vec {\mathbf{g}}_{3,r}}\) are calculated:

$$\begin{aligned} {\bar{g}_{3,r}} = \frac{{{{\vec {\mathbf{g}}}_3}{{\vec {\mathbf{g}}}_{3,r}}}}{{{{\bar{g}}_3}}}\begin{array}{*{20}{c}},&{{{\vec {\mathbf{g}}}_{3,r}} = {\mathbf{{g}}_{1,r}} \times {\mathbf{{g}}_2}} \end{array} + {\mathbf{{g}}_1} \times {\mathbf{{g}}_{2,r}}. \end{aligned}$$

The derivative of \({\mathbf{{g}}_{\alpha ,\beta }}\) with respect to the nodal displacement \({u_r}\) is given as follows:

$$\begin{aligned} {\mathbf{{g}}_{\alpha ,\beta ,r}} = \mathop \sum \limits _{I = 1}^{NS} {\varPhi _{I,\alpha \beta }}\left( \xi \right) {u_{I,r}}. \end{aligned}$$

The first derivatives of bending strains \({\kappa _{\alpha \beta }}\) with respect to the nodal displacement \({u_r}\) can be given as follows:

$$\begin{aligned} {\kappa _{\alpha \beta ,r}} = {\left( {{\mathbf{{G}}_{\alpha ,\beta }} \cdot {\mathbf{{G}}_3} - {\mathbf{{g}}_{\alpha ,\beta }} \cdot {\mathbf{{g}}_3}} \right) _{,r}} = - {\mathbf{{g}}_{\alpha ,\beta ,r}} \cdot {\mathbf{{g}}_3} - {\mathbf{{g}}_{\alpha ,\beta }} \cdot {\mathbf{{g}}_{3,r}}. \end{aligned}$$

The second derivatives of bending strains can be further obtained as follows:

$$\begin{aligned} {\kappa _{\alpha \beta ,rs}}= & {} {\left( {{\mathbf{{G}}_{\alpha ,\beta }} \cdot {\mathbf{{G}}_3} - {\mathbf{{g}}_{\alpha ,\beta }} \cdot {\mathbf{{g}}_3}} \right) _{,rs}} \nonumber \\= & {} - \left( {{\mathbf{{g}}_{\alpha ,\beta ,r}} \cdot {\mathbf{{g}}_{3,s}} + \mathbf{{g}}_{\alpha ,\beta ,s}} \cdot {\mathbf{{g}}_{3,r}} + {{\mathbf{{g}}_{\alpha ,\beta }} \cdot {\mathbf{{g}}_{3,rs}}} \right) . \end{aligned}$$

Appendix B: Asymptotic fields near a crack tip

1.1 B.1. In-plane enrichment

The displacement and membrane stress components at a crack tip can be expressed in polar coordinates \((r,\theta )\) as follows [68]:

$$\begin{aligned} \left\{ {\begin{array}{c} {{u_1}} \\ {u{}_2} \end{array}} \right\}= & {} \frac{{{K_{I}}}}{{2\mu }}\sqrt{\frac{r}{{2\pi }}} \left\{ {\begin{array}{c} {\cos \frac{\theta }{2}\left( {2\frac{{1 - \nu }}{{1 + \nu }} + 2{{\sin }^2}\frac{\theta }{2}} \right) } \\ {\sin \frac{\theta }{2}\left( {\frac{4}{{1 + \nu }} - 2{{\cos }^2}\frac{\theta }{2}} \right) } \end{array}} \right\} \\&\quad + \frac{{{K_{II}}}}{{2\mu }}\sqrt{\frac{r}{{2\pi }}} \left\{ {\begin{array}{*{20}{c}} {\sin \frac{\theta }{2}\left( {\frac{4}{{1 + \nu }} + 2{{\cos }^2}\frac{\theta }{2}} \right) } \\ { - \cos \frac{\theta }{2}\left( {2\frac{{1 - \nu }}{{1 + \nu }} - 2{{\sin }^2}\frac{\theta }{2}} \right) } \end{array}} \right\} \\ \left\{ {\begin{array}{*{20}{c}} {{\sigma _{11}}}\\ {{\sigma _{12}}}\\ {{\sigma _{22}}} \end{array}} \right\}= & {} \frac{{{K_I}}}{{\sqrt{2\pi r} }}\cos \frac{\theta }{2}\left\{ {\begin{array}{*{20}{c}} {1 - \sin \frac{\theta }{2}\sin \frac{{3\theta }}{2}}\\ {\sin \frac{\theta }{2}\cos \frac{{3\theta }}{2}}\\ {1 + \sin \frac{\theta }{2}\sin \frac{{3\theta }}{2}} \end{array}} \right\} \\&\quad + \frac{{{K_{II}}}}{{\sqrt{2\pi r} }}\cos \frac{\theta }{2}\left\{ {\begin{array}{*{20}{c}} {\sin \frac{\theta }{2}\left( {2 + \cos \frac{\theta }{2}\cos \frac{{3\theta }}{2}} \right) }\\ {cos\frac{\theta }{2}\left( {1 - \sin \frac{\theta }{2}\sin \frac{{3\theta }}{2}} \right) }\\ {\sin \frac{\theta }{2}\cos \frac{\theta }{2}\cos \frac{{3\theta }}{2}} \end{array}} \right\} \end{aligned}$$

where \(\mu = E/2(1 + \nu )\) is the shear modulus.

1.2 B.2. Out-of-plane enrichment

The internal stress due to bending can be computed by [56]

$$\begin{aligned} \begin{aligned} \left\{ {\begin{array}{*{20}{c}} {{\sigma _{rr}}} \\ {{\sigma _{r\theta }}} \\ {{\sigma _{\theta \theta }}} \end{array}} \right\}&= \frac{{{k_{1}}}}{{\sqrt{2r} }}\frac{{{x_3}}}{{2h}}\frac{1}{{3 + \nu }}\left\{ {\begin{array}{*{20}{c}} {\left( {3 + 5\nu } \right) \cos \frac{\theta }{2} - \left( {7 + \nu } \right) \cos \frac{{3\theta }}{2}} \\ { - \left( {1 - \nu } \right) \sin \frac{\theta }{2} + \left( {7 + \nu } \right) \sin \frac{{3\theta }}{2}} \\ {\left( {5 + 3\nu } \right) \cos \frac{\theta }{2} + \left( {7 + \nu } \right) \cos \frac{{3\theta }}{2}} \end{array}} \right\} \\&\quad +\, \frac{{{k_{2}}}}{{\sqrt{2r} }}\frac{{{x_3}}}{{2h}}\frac{1}{{3 + \nu }}\left\{ {\begin{array}{*{20}{c}} { - \left( {3 + 5\nu } \right) \sin \frac{\theta }{2} + \left( {5 + 3\nu } \right) \sin \frac{{3\theta }}{2}} \\ {\left( { - 1 + \nu } \right) \cos \frac{\theta }{2} + \left( {5 + 3\nu } \right) \cos \frac{{3\theta }}{2}} \\ { - \left( {5 + 3\nu } \right) \left( {\sin \frac{\theta }{2} + \sin \frac{{3\theta }}{2}} \right) } \end{array}} \right\} \\ \left\{ {\begin{array}{*{20}{c}} {{\sigma _{r3}}}\\ {{\sigma _{\theta 3}}} \end{array}} \right\}&= \frac{1}{{{{\left( {2r} \right) }^{3/2}}}}\frac{h}{2}\frac{1}{{\left( {3 + \nu } \right) }}\left[ {1 - {{\left( {\frac{{2{x_3}}}{h}} \right) }^2}} \right] \\&\quad \left\{ {\begin{array}{*{20}{c}} { - {k_1}\cos \left( {\theta /2} \right) + {k_2}\sin \left( {\theta /2} \right) }\\ { - {k_1}\sin \left( {\theta /2} \right) + {k_2}\cos \left( {\theta /2} \right) } \end{array}} \right\} \\ {\sigma _{33}}&= 0 \end{aligned} \end{aligned}$$

where \(x_3\) is the out-of-plane component of the current coordinate vector. The out-of-plane displacement is given

$$\begin{aligned} {u_3}= & {} \frac{{{{\left( {2r} \right) }^{\frac{3}{2}}}\left( {1 - {\nu ^2}} \right) }}{{2Eh\left( {3 + \nu } \right) }}\left\{ {{k_{1}}\left[ {\frac{1}{3}\left( {\frac{{7 + \nu }}{{1 - \nu }}} \right) \cos \frac{{3\theta }}{2} - \cos \frac{\theta }{2}} \right] }\right. \\&\quad \left. + {{k_{2}}\left[ { - \frac{1}{3}\left( {\frac{{5 + 3\nu }}{{1 - \nu }}} \right) \sin \frac{{3\theta }}{2} + \sin \frac{\theta }{2}} \right] } \right\} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen-Thanh, N., Li, W. & Zhou, K. Static and free-vibration analyses of cracks in thin-shell structures based on an isogeometric-meshfree coupling approach. Comput Mech 62, 1287–1309 (2018). https://doi.org/10.1007/s00466-018-1564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1564-y

Keywords

Navigation