Skip to main content
Log in

On triangular virtual elements for Kirchhoff–Love shells

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We develop low-order triangular virtual elements for linear Kirchhoff–Love shells from an engineering point of view. Flat element geometry is considered, which enables a direct shell discretization with no need for a curvilinear coordinate system or predefined initial mapping. Along with the assumed linearity of the problem, the superposition of the uncoupled membrane and plate energies is performed by unifying aspects of the virtual element method when applied to linear two-dimensional elasticity and plate bending problems. We explore low-order cases, namely linear to quadratic membrane displacements and quadratic to cubic deflection polynomial approximations such that no internal degrees of freedom are needed. For all elements, a single stabilization available in the literature is employed to stabilize the element formulations. Numerical examples of static problems show that the presented formulation is capable of solving complex shell problems. Possible extensions are discussed in future works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60

Similar content being viewed by others

Data Availability Statement

No datasets were generated or analysed during the current study.

References

  1. Da Veiga, L.B., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  2. Mengolini, M., Benedetto, M.F., Aragón, A.M.: An engineering perspective to the virtual element method and its interplay with the standard finite element method. Comput. Methods Appl. Mech. Eng. 350, 995–1023 (2019)

    Article  MathSciNet  Google Scholar 

  3. Wriggers, P., Hudobivnik, B., Allix, O.: On two simple virtual Kirchhoff-Love plate elements for isotropic and anisotropic materials. Comput. Mech. 69(2), 615–637 (2022)

    Article  MathSciNet  Google Scholar 

  4. Pimenta, P.M., Campello, E.M.B.: Shell curvature as an initial deformation: a geometrically exact finite element approach. Int. J. Numer. Meth. Eng. 78(9), 1094–1112 (2009)

    Article  MathSciNet  Google Scholar 

  5. Wriggers, P., Aldakheel, F., Hudobivnik, B.: Virtual Element Methods in Engineering and Sciences. Springer, Berlin (2023)

    Google Scholar 

  6. Da Veiga, L.B., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    Article  MathSciNet  Google Scholar 

  7. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    Article  MathSciNet  Google Scholar 

  8. Pimenta, P.M., Almeida Neto, E.S., Campello, E.M.B.: A fully nonlinear thin shell model of Kirchhoff–Love type. In: De Mattos Pimenta, P., Wriggers, P. (eds) New Trends in Thin Structures: Formulation, Optimization and Coupled Problems. CISM International Centre for Mechanical Sciences, vol. 519. Springer, Vienna (2010). https://doi.org/10.1007/978-3-7091-0231-2_2

  9. Timoshenko, S., Woinowsky-Krieger, S., et al.: Theory of Plates and Shells. McGraw-hill New York, Auckland (1959)

    Google Scholar 

  10. Da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(08), 1541–1573 (2014)

    Article  MathSciNet  Google Scholar 

  11. Da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: Serendipity nodal VEM spaces. Comput. Fluids 141, 2–12 (2016)

    Article  MathSciNet  Google Scholar 

  12. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia (2013)

    Book  Google Scholar 

  13. Batoz, J.-L., Cantin, G., CA, N.P.S.M.: Geometrically Nonlinear Analysis of Shell Structures Using Flat DKT Shell Elements. Monterey, California. Naval Postgraduate School, Monterey (1985)

  14. Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28(02), 387–407 (2018)

    Article  MathSciNet  Google Scholar 

  15. De Bellis, M.L., Wriggers, P., Hudobivnik, B.: Serendipity virtual element formulation for nonlinear elasticity. Comput. Struct. 223, 106094 (2019)

    Article  Google Scholar 

  16. Chen, A., Sukumar, N.: Stabilization-free serendipity virtual element method for plane elasticity. Comput. Methods Appl. Mech. Eng. 404, 115784 (2023)

    Article  MathSciNet  Google Scholar 

  17. Korelc, J., Wriggers, P.: Automation of Finite Element Methods. Springer, Switzerland (2016)

    Book  Google Scholar 

  18. Sanchez, M.L., Pimenta, P.M., Ibrahimbegovic, A.: A simple geometrically exact finite element for thin shells-part 1: statics. Comput. Mech. 1–21 (2023)

  19. Krysl, P., Chen, J.-S.: Benchmarking computational shell models. Arch. Comput. Methods Eng. 30(1), 301–315 (2023)

    Article  Google Scholar 

  20. Schoop, H., Hornig, J., Wenzel, T.: Remarks on Raasch’s hook. Tech. Mech. Eur. J. Eng. Mech. 22(4), 259–270 (2002)

    Google Scholar 

  21. Knight, N., Jr.: Raasch challenge for shell elements. AIAA J. 35(2), 375–381 (1997)

    Article  Google Scholar 

  22. Cook, R.D., Young, W.C.: Advanced Mechanics of Materials. Prentice Hall, New Jersey (1999)

    Google Scholar 

  23. Wriggers, P., Hudobivnik, B.: Virtual element formulation for gradient elasticity. Acta. Mech. Sin. 39(4), 722306 (2023)

    Article  MathSciNet  Google Scholar 

  24. Xu, B.-B., Peng, F., Wriggers, P.: Stabilization-free virtual element method for finite strain applications. Comput. Methods Appl. Mech. Eng. 417, 116555 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

T.P. Wu acknowledges the support by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001. P.M. Pimenta gratefully acknowledges the support by ANR-FAPESP through the thematic grant 2020/13362-1 with the title “Mechanics, Stochastics and Control with Code-Coupling: System-of-Multibody-Systems point-of-view to Optimize Off-Shore/In-Land Farms of Wind Turbines with Flexible Blades” that made this work possible. P.M. Pimenta also acknowledges the support by CNPq under the Grant 308142/2018-7 and by the Alexander von Humboldt Foundation for the Georg Forster Award that made possible his stays at the Universities of Duisburg-Essen and Hannover in Germany.

Author information

Authors and Affiliations

Authors

Contributions

P. M. Pimenta and P. Wriggers contributed equally to this work.

Corresponding author

Correspondence to T. P. Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T.P., Pimenta, P.M. & Wriggers, P. On triangular virtual elements for Kirchhoff–Love shells. Arch Appl Mech (2024). https://doi.org/10.1007/s00419-024-02591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00419-024-02591-9

Keywords

Navigation