Skip to main content
Log in

Fourth-order phase-field modeling for brittle fracture in piezoelectric materials

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Failure analyses of piezoelectric structures and devices are of engineering and scientific significance. In this paper, a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilton principle. Three typical electric boundary conditions are involved in the present model to characterize the fracture behaviors in various physical situations. A staggered algorithm is used to simulate the crack propagation. The polynomial splines over hierarchical T-meshes (PHT-splines) are adopted as the basis function, which owns the C1 continuity. Systematic numerical simulations are performed to study the influence of the electric boundary conditions and the applied electric field on the fracture behaviors of piezoelectric materials. The electric boundary conditions may influence crack paths and fracture loads significantly. The present research may be helpful for the reliability evaluation of the piezoelectric structure in the future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GAO, C. F. and FAN, W. X. Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack. International Journal of Solids and Structures, 36, 2527–2540 (1999)

    Article  MathSciNet  Google Scholar 

  2. CHEN, W. Q. and DING, H. J. A penny-shaped crack in a transversely isotropic piezoelectric solid: modes II and III problems. Acta Mechanica Sinica, 15, 52–58 (1999)

    Article  Google Scholar 

  3. WANG, B. L. and NODA, N. Exact thermoelectroelasticity solution for a penny-shaped crack in piezoelectric materials. Journal of Thermal Stresses, 27, 241–251 (2004)

    Article  Google Scholar 

  4. ZHOU, Z. G. and CHEN, Z. T. A 3-D rectangular permeable crack or two 3-D rectangular permeable cracks in a piezoelectric material. Archive of Applied Mechanics, 81, 641–668 (2011)

    Article  Google Scholar 

  5. CHEN, H., WEI, W., LIU, J., and FANG, D. Propagation of a semi-infinite conducting crack in piezoelectric materials: mode-I problem. Journal of the Mechanics and Physics of Solids, 68, 77–92 (2014)

    Article  MathSciNet  Google Scholar 

  6. BHARGAVA, R. R. and SHARMA, K. A study of finite size effects on cracked 2-D piezoelectric media using extended finite element method. Computational Materials Science, 50, 1834–1845 (2011)

    Article  Google Scholar 

  7. MISHRA, R. and BURELA, R. G. Thermo-electro-mechanical fatigue crack growth simulation in piezoelectric solids using XFEM approach. Theoretical and Applied Fracture Mechanics, 104, 102388 (2019)

    Article  Google Scholar 

  8. SCHLÜTER, A., WILLENBÜCHER, A., KUHN, C., and MÜLLER, R. Phase field approximation of dynamic brittle fracture. Computational Mechanics, 54, 1141–1161 (2014)

    Article  MathSciNet  Google Scholar 

  9. RABCZUK, T. and BELYTSCHKO, T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 61, 2316–2343 (2004)

    Article  Google Scholar 

  10. RABCZUK, T. and BELYTSCHKO, T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 196, 2777–2799 (2007)

    Article  MathSciNet  Google Scholar 

  11. RABCZUK, T., ZI, G., BORDAS, S., and HUNG, N. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 199, 2437–2455 (2010)

    Article  Google Scholar 

  12. FRANCFORT, G. A. and MARIGO, J. J. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 46, 1319–1342 (1998)

    Article  MathSciNet  Google Scholar 

  13. BOURDIN, B., FRANCFORT, G. A., and MARIGO, J. J. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 48, 797–826 (2000)

    Article  MathSciNet  Google Scholar 

  14. MIEHE, C., WELSCHINGER, F., and HOFACKER, M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 83, 1273–1311 (2010)

    Article  MathSciNet  Google Scholar 

  15. KUHN, C. and MÜLLER, R. A continuum phase field model for fracture. Engineering Fracture Mechanics, 77, 3625–3634 (2010)

    Article  Google Scholar 

  16. PHAM, K., AMOR, H., MARIGO, J., and MAURINI, C. Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanic, 20, 618 (2011)

    Article  Google Scholar 

  17. WU, J. Y. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. Journal of the Mechanics and Physics of Solids, 103, 72–99 (2017)

    Article  MathSciNet  Google Scholar 

  18. WU, J. Y. and NGUYEN, V. A length scale insensitive phase-field damage model for brittle fracture. Journal of the Mechanics and Physics of Solids, 119, 20–42 (2018)

    Article  MathSciNet  Google Scholar 

  19. ZHOU, S., RABCZUK, T., and ZHUANG, X. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Advances in Engineering Software, 122, 31–49 (2018)

    Article  Google Scholar 

  20. AMBATI, M., KRUSE, R., and DE LORENZIS, L. A phase-field model for ductile fracture at finite strains and its experimental verification. Computational Mechanics, 57, 149–167 (2016)

    Article  MathSciNet  Google Scholar 

  21. RODRIGUEZ, P., ULLOA, J., SAMANIEGO, C., and SAMANIEGO, E. A variational approach to the phase field modeling of brittle and ductile fracture. International Journal of Mechanical Sciences, 144, 502 (2018)

    Article  Google Scholar 

  22. KHALIL, Z., ELGHAZOULI, A. Y., and MARTÍNEZ-PAÑEDA, E. A generalised phase field model for fatigue crack growth in elastic-plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering, 388, 114286 (2022)

    Article  MathSciNet  Google Scholar 

  23. HAO, S., CHEN, Y., CHENG, J., and SHEN, Y. A phase field model for high-speed impact based on the updated Lagrangian formulation. Finite Elements in Analysis and Design, 199, 103652 (2022)

    Article  MathSciNet  Google Scholar 

  24. DU, C., CUI, H., ZHANG, H., CAI, Z., and ZHAI, W. Phase field modeling of thermal fatigue crack growth in elastoplastic solids and experimental verification. Mechanics of Materials 188, 104839 (2024)

    Article  Google Scholar 

  25. ZHOU, S., ZHUANG, X., and RABCZUK, T. A phase-field modeling approach of fracture propagation in poroelastic media. Engineering Geology, 240, 189–203 (2018)

    Article  Google Scholar 

  26. ZHANG, Y., WANG, J., and ZHANG, T. The jumping dielectric breakdown behavior induced by crack propagation in ferroelectric materials: a phase field study. Journal of the Mechanics and Physics of Solids, 169, 105088 (2022)

    Article  MathSciNet  Google Scholar 

  27. YE, J. and ZHANG, L. Damage evolution of polymer-matrix multiphase composites under coupled moisture effects. Computer Methods in Applied Mechanics and Engineering, 388, 114213 (2022)

    Article  MathSciNet  Google Scholar 

  28. LI, D., LI, P., LI, W., and ZHOU, K. Three-dimensional phase-field modeling of temperature-dependent thermal shock-induced fracture in ceramic materials. Engineering Fracture Mechanics, 268, 108444 (2022)

    Article  Google Scholar 

  29. TAN, Y., LIU, C., ZHAO, J., HE, Y., LI, P., and LI, X. Phase field model for brittle fracture in multiferroic materials. Computer Methods in Applied Mechanics and Engineering, 414, 116193 (2023)

    Article  MathSciNet  Google Scholar 

  30. MIEHE, C., WELSCHINGER, F., and HOFACKER, M. A phase field model of electromechanical fracture. Journal of the Mechanics and Physics of Solids, 58, 1716–1740 (2010)

    Article  MathSciNet  Google Scholar 

  31. ABDOLLAHI, A. and ARIAS, I. Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions. Journal of the Mechanics and Physics of Solids, 60, 2100–2126 (2012)

    Article  MathSciNet  Google Scholar 

  32. WILSON, Z. A., BORDEN, M. J., and LANDIS, C. M. A phase-field model for fracture in piezoelectric ceramics. International Journal of Fracture, 183, 135–153 (2013)

    Article  Google Scholar 

  33. MOHANTY, S., KUMBHAR, P. Y., SWAMINATHAN, N., and ANNABATTULA, R. A phase-field model for crack growth in electro-mechanically coupled functionally graded piezo ceramics. Smart Materials and Structures, 29, 045005 (2020)

    Article  Google Scholar 

  34. WU, J. Y. and CHEN, W. X. Phase-field modeling of electromechanical fracture in piezoelectric solids: analytical results and numerical simulations. Computer Methods in Applied Mechanics and Engineering, 387, 114125 (2021)

    Article  MathSciNet  Google Scholar 

  35. TAN, Y., HE, Y., LIU, C., and LI, X. Phase field fracture model of transversely isotropic piezoelectric materials with thermal effect. Engineering Fracture Mechanics, 268, 108479 (2022)

    Article  Google Scholar 

  36. TAN, Y., HE, Y., and LI, X. Phase field fracture modeling of transversely isotropic piezoelectric material with anisotropic fracture toughness. International Journal of Solids and Structures, 248, 111615 (2022)

    Article  Google Scholar 

  37. TAN, Y., HE, Y., LI, X., and KANG, G. A phase field model for fatigue fracture in piezoelectric solids: a residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering, 399, 115459 (2022)

    Article  MathSciNet  Google Scholar 

  38. DAN, S., TARAFDER, P., and GHOSH, S. Adaptive wavelet-enhanced cohesive zone phase-field FE model for crack evolution in piezoelectric composites. Computer Methods in Applied Mechanics and Engineering, 392, 114636 (2022)

    Article  MathSciNet  Google Scholar 

  39. TARAFDER, P., DAN, S., and GHOSH, S. Cohesive zone phase field model for electromechanical fracture in multiphase piezoelectric composites. Journal of Composite Materials, 57, 531–543 (2023)

    Article  Google Scholar 

  40. BEHERA, A. K., UNNIKRISHNA PILLAI, A., and RAHAMAN, M. M. A phase-field model for electro-mechanical fracture with an open-source implementation of it using Gridap in Julia. Mathematics and Mechanics of Solids, 28, 1877–1908 (2023)

    Article  MathSciNet  Google Scholar 

  41. KIRAN, R., NGUYEN-THANH, N., and ZHOU, K. Adaptive isogeometric analysis-based phase-field modeling of brittle electromechanical fracture in piezoceramics. Engineering Fracture Mechanics, 274, 108738 (2022)

    Article  Google Scholar 

  42. KIRAN, R., NGUYEN-THANH, N., YU, H., and ZHOU, K. Adaptive isogeometric analysis-based phase-field modeling of interfacial fracture in piezoelectric composites. Engineering Fracture Mechanics, 288, 10918 (2023)

    Article  Google Scholar 

  43. BORDEN, M. J., HUGHES, T. J. R., LANDIS, C. M., and VERHOOSEL, C. V. A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Computer Methods in Applied Mechanics and Engineering, 273, 100 (2014)

    Article  MathSciNet  Google Scholar 

  44. GOSWAMI, S., ANITESCU, C., and RABCZUK, T. Adaptive fourth-order phase field analysis for brittle fracture. Computer Methods in Applied Mechanics and Engineering, 361, 112808 (2020)

    Article  MathSciNet  Google Scholar 

  45. MAKVANDI, R., DUCZEK, S., and JUHRE, D. A phase-field fracture model based on strain gradient elasticity. Engineering Fracture Mechanics, 220, 106648 (2020)

    Article  Google Scholar 

  46. CHEN, L., LI, B., and DE-BORST, R. Adaptive isogeometric analysis for phase-field modeling of anisotropic brittle fracture. International Journal for Numerical Methods in Engineering, 121, 4630 (2020)

    Article  MathSciNet  Google Scholar 

  47. NGUYEN-THANH, N., LI, W., HUANG, J., and ZHOU, K. Adaptive higher-order phase-field modeling of anisotropic brittle fracture in 3D polycrystalline materials. Computer Methods in Applied Mechanics and Engineering, 372, 113434 (2020)

    Article  MathSciNet  Google Scholar 

  48. GOSWAMI, S., ANITESCU, C., and RABCZUK, T. Adaptive fourth-order phase field analysis using deep energy minimization. Theoretical and Applied Fracture Mechanics, 107, 102527 (2020)

    Article  Google Scholar 

  49. SRIDHAR, A. and KEIP, M. A. A phase-field model for anisotropic brittle fracturing of piezoelectric ceramics. International Journal of Fracture, 220, 221–242 (2019)

    Google Scholar 

  50. PARK, S. and SUN, C. T. Fracture criteria for piezoelectric ceramics. Journal of the American Ceramic Society, 78, 1475–1480 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 12072297 and 12202370) and the Natural Science Foundation of Sichuan Province of China (No. 24NSFSC4777)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Peng, F., Liu, C. et al. Fourth-order phase-field modeling for brittle fracture in piezoelectric materials. Appl. Math. Mech.-Engl. Ed. 45, 837–856 (2024). https://doi.org/10.1007/s10483-024-3118-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-024-3118-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation