Skip to main content
Log in

Computation of the effective nonlinear mechanical response of lattice materials considering geometrical nonlinearities

  • Original paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The asymptotic homogenization technique is presently developed in the framework of geometrical nonlinearities to derive the large strains effective elastic response of network materials viewed as repetitive beam networks. This works extends the small strains homogenization method developed with special emphasis on textile structures in Goda et al. (J Mech Phys Solids 61(12):2537–2565, 2013). A systematic methodology is established, allowing the prediction of the overall mechanical properties of these structures in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the chosen equivalent continuum. Internal scale effects of the initially discrete structure are captured by the consideration of a micropolar effective continuum model. Applications to the large strain response of 3D hexagonal lattices and dry textiles exemplify the powerfulness of the proposed method. The effective mechanical responses obtained for different loadings are validated by FE simulations performed over a representative unit cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

\(\mathbf{B}_R\) :

Set of beams within the reference unit cell

\(l^{b}=\varepsilon L^{b}\) :

Length of the beam b

\(\mathbf{B}^\mathrm{b}=l^{b}{} \mathbf{e}_\mathrm{x}^\mathrm{b} \) :

Beam vector length

\(\uplambda _\mathrm{i}\) :

Applied stretch in direction i

\(\beta ^{i}\) :

Curvilinear coordinates associated with the unit vectors

\({{\varvec{\Gamma }}}\) :

Lagrangian wryness tensor

\(\delta ^{\textit{ib}}\) :

Shift factor for nodes belonging to a neighboring cell

\(\mathbf{m}\) :

Couple stress tensor

\(\mathbf{E}_\mathrm{G} \) :

Green–Lagrange strain

\(\mathbf{R}\) :

Position vector of any material point within the effective continuum

\(\varepsilon =l/L\) :

Small scale parameter

\({\overline{\mathbf{R}}} _\mathrm{n} \) :

Micropolar rotation tensor

\(\mathbf{F}\) :

Deformation gradient

\(\mathbf{S}^{i}\) :

Stress vectors

\(\mathbf{F}_\mathrm{e} \) :

External force

\({{\varvec{\upsigma }}}\) :

Stress tensor

\(\mathbf{F}^{\upvarepsilon {\mathrm{b}}}\) :

Resultant of forces at the nodes of a beam b

\({\varvec{\upmu }}^\mathrm{i}\) :

Couple stress vectors

\({{\varvec{\upvarphi }}}=\varphi _i \mathbf{e}_i \) :

Microrotation vector

V:

Total potential energy

g :

Jacobian of the transformation from Cartesian to curvilinear coordinates

\(\mathbf{v}\) :

Virtual translational velocity field

I :

Second order identity tensor

W\(_\mathrm{ext}\), W\(_\mathrm{int}\) :

External and internal works

\(\mathbf{K}_\mathrm{T}^\mathrm{S} \) :

Stress stifness matrix

W :

Virtual rotational velocity field

\(\mathbf{K}_\mathrm{T}^\mathrm{m} \) :

Micropolar stiffness matrix

\({\mathbb Z}\) :

Set of cells of the macroscopic structure

References

  1. Goda I, Assidi M, Ganghoffer JF (2013) Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J Mech Phys Solids 61(12):2537–2565

    Article  Google Scholar 

  2. Mourad A (2003) Description topologique de l’architecture fibreuse et modelisation mecanique du myocarde. PhD Thesis, I.N.P.L. Grenoble

  3. Caillerie D, Mourad Raoult A (2006) Discrete homogenization in graphene sheet modeling. J Elasticity 84:33–68

    Article  MathSciNet  MATH  Google Scholar 

  4. Raoult A, Caillerie D, Mourad A (2008) Elastic lattices: equilibrium, invariant laws and homogenization. Ann Univ Ferrara 54:297–318

    Article  MathSciNet  MATH  Google Scholar 

  5. Dos Reis F, Ganghoffer JF (2012) Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput Struct 112–113:354–363

    Article  Google Scholar 

  6. Gibson LJ, Ashby MF (1982) The mechanics of 3-dimensional cellular materials. Proc R Soc Lond Ser A 382(1782):43

    Article  Google Scholar 

  7. Gibson LJ, Ashby MF, Schajer GS, Robertson CI (1982) The mechanics of two-dimensional cellular materials. Proc R Soc Lond Ser A 382(1782):25–42

    Article  Google Scholar 

  8. Zhu HX, Knott JF, Mills NJ (1997) Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. J Mech Phys Solids 45(3):319

    Article  Google Scholar 

  9. Wang AJ, McDowell DL (2004) In plane stiffness and yield strength of periodic metal honeycombs. J Eng Mater Technol Trans ASME 126(2):137–156

    Article  Google Scholar 

  10. Hutchinson R, Fleck N (2006) The structural performance of the periodic truss. J Mech Phys Solids 54:756–782

    Article  MathSciNet  MATH  Google Scholar 

  11. Pindera M-J, Khatam H, Drago AS, Bansal Y (2009) Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches. Compos Struct 40:349–378

    Google Scholar 

  12. Charalambakis N (2010) Homogenization techniques and micromechanics: a survey and perspectives. Appl Mech Rev 63(3):1–10

    Article  MathSciNet  Google Scholar 

  13. Warren WE, Kraynik AM, Stone CM (1989) A constitutive model for two-dimensional nonlinear elastic foams. J Mech Phys Solids Struct 37:717–733

    Article  MATH  Google Scholar 

  14. Warren WE, Kraynik AM (1991) The nonlinear elastic behaviour of open-cell foams. Trans ASME 58:375–381

    Article  MATH  Google Scholar 

  15. Wang Y, Cuitino AM (2000) Three-dimensional nonlinear open cell foams with large deformations. J Mech Phys Solids 48:961–988

    Article  MathSciNet  MATH  Google Scholar 

  16. Hohe J, Becker W (2003) Effective mechanical behavior of hyperelastic honeycombs and two dimensional model foams at finite strain. Int J Mech Sci 45:891–913

    Article  MATH  Google Scholar 

  17. Janus-Michalska M, Pȩcherski RP (2003) Macroscopic properties of open-cell foams based on micromechanical modeling. Technische Mechanik, Band 23. Heft 2–4:221–231

  18. Janus-Michalska J (2005) Effective models describing elastic behavior of cellular materials. Arch Metall Mater 50:595–608

    Google Scholar 

  19. Janus-Michalska J (2011) Hyperelastic behavior of cellular structures based on micromechanical modeling at small strain. Arch Mech 63(1):3–23

    MathSciNet  MATH  Google Scholar 

  20. Vigliotti A, Deshpande VS, Pasini D (2014) Non linear constitutive models for lattice materials. J Mech Phys Solids 64:44–60

    Article  MathSciNet  Google Scholar 

  21. Sanchez-Palencia E (1980) Non-inhomogeneous media and vibration theory. Lecture notes in physics, vol 127. Springer, Berlin

  22. Bakhvalov NS, Panasenko GP (1989) Homogenization averaging processes in periodic media. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  23. Warren WE, Byskov E (2002) Three-fold symmetry restrictions on two-dimensional micropolar materials. Eur J Mech A 21:779–792

    Article  MathSciNet  MATH  Google Scholar 

  24. Mourad A, Caillerie DA, Raoult A (2003) A nonlinearly elastic homogenized constitutive law for the myocardium. Comput Fluid Solid Mech 2:1779–1781

    Google Scholar 

  25. Sab K, Pradel F (2009) Homogenisation of periodic Cosserat media. Int J Comput Appl Technol 34:60–71

    Article  Google Scholar 

  26. Trovalusci P, Masiani R (1999) Material symmetries of micropolar continua equivalent to lattices. Int J Solids Struct 36:2091–108

    Article  MathSciNet  MATH  Google Scholar 

  27. Feyel F, Chaboche J-L (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3):309–330

    Article  MATH  Google Scholar 

  28. Goda I, Rahouadj R, Ganghoffer JF (2013) Size dependent static and dynamic behavior of trabecular bone based on micromechanical models of the trabecular architecture. Int J Eng Sci 72:53–77

    Article  Google Scholar 

  29. Goda I, Assidi M, Ganghoffer JF (2014) A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech Model Mechanobiol 13:53–83

    Article  Google Scholar 

  30. Pietraszkiewicz W, Eremeyev VA (2009) On natural strain measures of the non-linear micropolar continuum. Int J Solids Struct 46(3):774–787

    Article  MathSciNet  MATH  Google Scholar 

  31. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity 61:1–48

    Article  MathSciNet  MATH  Google Scholar 

  32. Steinmann P (1994) A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int J Solids Struct 31(8):1063–1084

    Article  MathSciNet  MATH  Google Scholar 

  33. Tan P, Tong L, Steven GP (1997) Modeling for predicting the mechanical properties of textile composites—a review. Composite A 28(11):903–922

    Article  Google Scholar 

  34. Crookston JJ, Long AC, Jones IA (2005) A summary review of mechanical properties prediction methods for textile reinforced polymer composites. Proc. IMechE, Part L. J Mater 219:91–109

    Google Scholar 

  35. Peng X, Cao J (2002) A dual homogenization and finite element approach for material characterization of textile composites. Composites B 33:45–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Goda.

Appendices

Appendix 1: Small strains homogenization: expressions of forces, moments and virtual translation and rotation velocities

The first order normal and transverse forces and the second order moment about \(\text {x}^{\prime }\), \(\text {y}^{\prime }\), and \(\text {z}^{\prime }\) at the beam extremities can be successively expressed versus the kinematical nodal variables as

$$\begin{aligned} F_x^{\varepsilon {b}}= & {} \frac{E_s^b A^{\varepsilon {b}}}{l^{\varepsilon {b}}}\left( {\mathbf{e}_x \cdot \left( {\varepsilon \Delta \mathbf{U}_{1}^\mathrm{b} +\varepsilon ^{{2}}\Delta \mathbf{U}_{2}^\mathrm{b} } \right) } \right) \end{aligned}$$
(29)
$$\begin{aligned} F_y^{\varepsilon {b}}= & {} \frac{12E_s^b I_z^{\varepsilon {b}} }{\left( {l^{\varepsilon {b}}} \right) ^{3}}\left( \mathbf{e}_y \cdot \left( {\varepsilon \Delta \mathbf{U}_{1}^\mathrm{b} +\varepsilon ^{{2}}\Delta \mathbf{U}_{2}^\mathrm{b} } \right) \right. \nonumber \\&-\frac{l^{\varepsilon {b}}}{2}\Bigg ( \mathbf{e}_z \cdot \Bigg ( {{\varvec{\upvarphi }} }_0^{O_{R(b)} } +{{\varvec{\upvarphi }} }_0^{E_{R(b)} } +\varepsilon \Bigg ( {{\varvec{\upvarphi }} }_1^{O_{R(b)} } +{{\varvec{\upvarphi }} }_1^{E_{R\left( b \right) } }\nonumber \\&\left. \left. \left. +\frac{\partial {{\varvec{\upvarphi }} }_0 }{\partial \beta ^{i}}\delta ^\textit{ib} \Bigg ) \right) \right) \right) \end{aligned}$$
(30)
$$\begin{aligned} F_z^{\varepsilon {b}}= & {} \frac{12E_s^b I_y^{\varepsilon {b}} }{\left( {l^{\varepsilon {b}}} \right) ^{3}}\Bigg ( \mathbf{e}_z \cdot \left( {\varepsilon \Delta \mathbf{U}_{1}^\mathrm{b} +\varepsilon ^{{2}}\Delta \mathbf{U}_{2}^\mathrm{b} } \right) \nonumber \\&+\frac{l^{\varepsilon {b}}}{2}\Bigg ( \mathbf{e}_y \cdot \Bigg ( {{\varvec{\upvarphi }} }_0^{O_{R(b)} } +{{\varvec{\upvarphi }} }_0^{E_{R(b)} } +\varepsilon \Bigg ( {{\varvec{\upvarphi }} }_1^{O_{R(b)} } +{{\varvec{\upvarphi }} }_1^{E_{R\left( b \right) } }\nonumber \\&\left. \left. \left. \left. +\frac{\partial {{\varvec{\upvarphi }} }_0 }{\partial \beta ^{i}}\delta ^\textit{ib} \right) \right) \right) \right) \end{aligned}$$
(31)
$$\begin{aligned} M_x^{O(b)\varepsilon }= & {} \frac{G_s^b J^{\varepsilon {b}}}{l^{\varepsilon {b}}}\varepsilon \left( {\mathbf{e}_x \cdot \left( {{{\varvec{\upvarphi }} }_1^{O_{R(b)} } -\left( {\frac{\partial {{\varvec{\upvarphi }} }_0 }{\partial \beta ^{i}}\delta ^\textit{ib}+{{\varvec{\upvarphi }} }_1^{E_{R(b)} } } \right) } \right) } \right) \nonumber \\ M_x^{E(b)\varepsilon }= & {} \frac{G_s^b J^{\varepsilon {b}}}{l^{\varepsilon {b}}}\varepsilon \left( {\mathbf{e}_x \cdot \left( {{{\varvec{\upvarphi }} }_1^{E_{R(b)} } -{{\varvec{\upvarphi }} }_1^{O_{R(b)} } +\frac{\partial {{\varvec{\upvarphi }} }_0 }{\partial \beta ^{i}}\delta ^\textit{ib}} \right) } \right) \nonumber \\ \end{aligned}$$
(32)
$$\begin{aligned} M_y^{O(b)\varepsilon }= & {} \frac{6E_s^b I_y^{\varepsilon {b}} }{\left( {l^{\varepsilon {b}}} \right) ^{2}}\left( {\mathbf{e}_z \cdot \left( {\varepsilon \Delta \mathbf{U}_{1}^\mathrm{b} +\varepsilon ^{{2}}\Delta \mathbf{U}_{2}^\mathrm{b} } \right) } \right) \nonumber \\&\,+\frac{E_s^b I_y^{\varepsilon {b}} }{l^{\varepsilon {b}}}\Bigg ( \mathbf{e}_y \cdot \Bigg ( 4{{\varvec{\upvarphi }} }_0^{O_{R(b)} } +2{{\varvec{\upvarphi }} }_0^{E_{R(b)} } +\varepsilon \Bigg ( 4{{\varvec{\upvarphi }} }_1^{O_{R(b)} }\nonumber \\&\left. \left. \left. \,+2{{\varvec{\upvarphi }} }_1^{E_{R\left( b \right) }} +2\frac{\partial {{\varvec{\upvarphi }} }_0 }{\partial \beta ^{i}}\delta ^\textit{ib} \right) \right) \right) \nonumber \\ M_y^{E(b)\varepsilon }= & {} \frac{6E_s^b I_y^{\varepsilon {b}} }{\left( {l^{\varepsilon {b}}} \right) ^{2}}\left( {\mathbf{e}_z \cdot \left( {\varepsilon \Delta \mathbf{U}_{1}^\mathrm{b} +\varepsilon ^{{2}}\Delta \mathbf{U}_{2}^\mathrm{b} } \right) } \right) \nonumber \\&\,+\frac{E_s^b I_y^{\varepsilon {b}} }{l^{\varepsilon {b}}}\Bigg ( \mathbf{e}_y \cdot \Bigg ( 2{{\varvec{\upvarphi }} }_0^{O_{R(b)} } +4{{\varvec{\upvarphi }} }_0^{E_{R(b)} } +\varepsilon \Bigg ( 2{{\varvec{\upvarphi }} }_1^{O_{R(b)} }\nonumber \\&\left. \left. \left. +\,4{{\varvec{\upvarphi }} }_1^{E_{R\left( b \right) } } +4\frac{\partial {{\varvec{\upvarphi }} }_0 }{\partial \beta ^{i}}\delta ^\textit{ib} \right) \right) \right) \end{aligned}$$
(33)
$$\begin{aligned} M_z^{O(b)\varepsilon }= & {} \frac{6E_s^b I_z^{\varepsilon {b}} }{\left( {l^{\varepsilon {b}}} \right) ^{2}}\left( {-\mathbf{e}_y \cdot \left( {\varepsilon \Delta \mathbf{U}_{1}^\mathrm{b} +\varepsilon ^{{2}}\Delta \mathbf{U}_{2}^\mathrm{b} } \right) } \right) \nonumber \\&+\frac{E_s^b I_z^{\varepsilon {b}} }{l^{\varepsilon {b}}}\Bigg ( \mathbf{e}_z \cdot \Bigg ( 4{{\varvec{\upvarphi }} }_0^{O_{R(b)} } +2{{\varvec{\upvarphi }} }_0^{E_{R(b)} } +\varepsilon \Bigg ( 4{{\varvec{\upvarphi }} }_1^{O_{R(b)} }\nonumber \\&\left. \left. \left. +2{{\varvec{\upvarphi }} }_1^{E_{R\left( b \right) } } +2\frac{\partial {{\varvec{\upvarphi }} }_0 }{\partial \beta ^{i}}\delta ^\textit{ib} \right) \right) \right) \nonumber \\ M_z^{E(b)\varepsilon }= & {} \frac{6E_s^b I_z^{\varepsilon {b}} }{\left( {l^{\varepsilon {b}}} \right) ^{2}}\left( {-\mathbf{e}_y \cdot \left( {\varepsilon \Delta \mathbf{U}_{1}^\mathrm{b} +\varepsilon ^{{2}}\Delta \mathbf{U}_{2}^\mathrm{b} } \right) } \right) \nonumber \\&+\frac{E_s^b I_z^{\varepsilon {b}} }{l^{\varepsilon {b}}}\Bigg ( \mathbf{e}_z \cdot \Bigg ( 2{{\varvec{\upvarphi }} }_0^{O_{R(b)} } +4{{\varvec{\upvarphi }} }_0^{E_{R(b)} } +\varepsilon \nonumber \\&\times \left. \left. \left( 2{{\varvec{\upvarphi }} }_1^{O_{R(b)} } +4{{\varvec{\upvarphi }}}_1^{E_{R\left( b \right) } }+4\frac{\partial {{\varvec{\upvarphi }} }_0 }{\partial \beta ^{i}}\delta ^\textit{ib} \right) \right) \right) \nonumber \\ \end{aligned}$$
(34)

where \(E_s^b \) and \(G_s^b \) the tensile and shear modulus of the bulk material.

The asymptotic development of the virtual velocity and rotation rate are next expressed. For any virtual velocity field \(\mathbf{v}^{\upvarepsilon }(\upbeta )\), a Taylor series expansion leads to

$$\begin{aligned} \mathbf{v}^{\upvarepsilon }\left( {\hbox {O}\left( \hbox {b} \right) } \right) -\mathbf{v}^{\upvarepsilon }\left( {\hbox {E}\left( \hbox {b} \right) } \right) \approx \upvarepsilon \frac{\partial \mathbf{v}\left( {\upbeta ^{\upvarepsilon }} \right) }{\partial \upbeta ^\mathrm{i}}{{\updelta }^{\mathrm{ib}}} \end{aligned}$$
(35)

The rotation rate field is similarly expanded taking into account the central node of the beam, so that a change of curvature of any beam can be captured:

$$\begin{aligned} \mathbf{w}^{\mathrm{O}(\mathrm{b})\upvarepsilon }\left( \upbeta \right)= & {} \mathbf{w}\left( \upbeta \right) ;\quad \mathbf{w}^{\mathrm{E}(\mathrm{b})\upvarepsilon }\left( {\upbeta +\upvarepsilon \delta ^\mathrm{i}} \right) =\mathbf{w}\left( \upbeta \right) \nonumber \\&+\,\upvarepsilon \frac{\partial \mathbf{w}\left( \upbeta \right) }{\partial \upbeta ^\mathrm{i}}{\updelta }^\mathrm{i} \end{aligned}$$
(36)

Appendix 2: Computation of the tangent stiffness matrix for the DH scheme

The variations of the beam orientation and length are obtained after straightforward computations as follows:

$$\begin{aligned} \updelta \mathbf{e}_\mathrm{x}^\mathrm{b}= & {} \mathbf{C}\cdot \mathbf{P}\cdot \updelta \mathbf{B}^{\mathrm{b}}/\mathrm{l}^{\mathrm{b}}, \updelta \mathbf{e}_\mathrm{y}^\mathrm{b} ={{\varvec{\Omega }} }_\mathrm{z} \cdot \updelta \mathbf{e}_\mathrm{x}^\mathrm{b}, \updelta \mathbf{e}_\mathrm{z}^\mathrm{b} ={{\varvec{\Omega }} }_\mathrm{y} \cdot \updelta \mathbf{e}_\mathrm{x}^\mathrm{b}\nonumber \\ \updelta \hbox {l}^{\mathrm{b}}= & {} \mathbf{B}^{\mathrm{b}}\cdot \left[ {\mathbf{I}+\mathbf{C}\cdot \mathbf{P}} \right] \cdot \updelta \mathbf{B}^{\mathrm{b}}/\mathrm{l}^{\mathrm{b}} \end{aligned}$$
(37)

In (37), we have introduced the projection operators \(\mathbf{P}\) and \(\mathbf{C}\) expressing as

$$\begin{aligned} \mathbf{P}=\left( {\mathbf{I}-\mathbf{e}_\mathrm{x}^\mathrm{b} \otimes \mathbf{e}_\mathrm{x}^\mathrm{b} } \right) ,\quad \mathbf{C}=\left( {\mathbf{I}-\frac{1}{2}{} \mathbf{e}_\mathrm{x}^\mathrm{b} \otimes \mathbf{e}_\mathrm{x}^\mathrm{b} } \right) \end{aligned}$$
(38)

In the present large strains regime, since the beam length is changing, one has to expand it versus the asymptotic parameter \(\upvarepsilon \) as for all other kinematic variables (these expansions are not repeated in this subsection),

$$\begin{aligned} \hbox {l}^\mathrm{b}=\hbox {l}_0^\mathrm{b} +\upvarepsilon \hbox {l}_1^\mathrm{b} +{\upvarepsilon }^{2}\hbox {l}_2^\mathrm{b} +\cdots +{\upvarepsilon }^\mathrm{p}\hbox {l}_\mathrm{p}^\mathrm{b} \end{aligned}$$
(39)

The induced perturbations of the forces and moments are then obtained as

Table 4 Plain weave and twill fabric configuration parameter
Table 5 Elastic properties of weft and warp yarns
Table 6 Mechanical properties of weft, warp and contact beams
(40)

We introduced in (40) the two orthogonal transformations \({{\varvec{\Omega }} }_\mathrm{y},{{\varvec{\Omega }} }_\mathrm{z} \) elaborated as

$$\begin{aligned} \begin{array}{lll} {{\varvec{\Omega }} }_\mathrm{y} \left( {\mathbf{e}_\mathrm{x}^\mathrm{b},\mathbf{e}_\mathrm{z}^\mathrm{b},\mathrm{y}} \right) =\left[ {{\begin{array}{lll} {\cos \left( {\frac{\uppi }{2}} \right) }&{} 0&{} {\sin \left( {\frac{\uppi }{2}} \right) } \\ 0&{} 1&{} 0 \\ {-\sin \left( {\frac{\uppi }{2}} \right) }&{} 0&{} {\cos \left( {\frac{\uppi }{2}} \right) } \\ \end{array} }} \right] \\ {{\varvec{\Omega }} }_\mathrm{z} \left( {\mathbf{e}_\mathrm{x}^\mathrm{b},\mathbf{e}_\mathrm{y}^\mathrm{b},\mathrm{z}} \right) =\left[ {{\begin{array}{lll} {\cos \left( {\frac{\uppi }{2}} \right) }&{} {-\sin \left( {\frac{\uppi }{2}} \right) }&{} 0 \\ {\sin \left( {\frac{\uppi }{2}} \right) }&{} {\cos \left( {\frac{\uppi }{2}} \right) }&{} 0 \\ 0&{} 0&{} 1 \\ \end{array} }} \right] \\ \end{array} \end{aligned}$$
(41)

The linear stiffness, the initial displacement stiffness and initial stress stiffness express successively as

$$\begin{aligned} \mathbf{K}^{\mathrm{b}}_{\mathrm{So}}= & {} \frac{\hbox {E}_\mathrm{S}^\mathrm{b} \mathrm{A}^{\mathrm{b}}}{\mathrm{l}^{\mathrm{b}}}\left( {\mathbf{e}_\mathrm{x}^\mathrm{b} \otimes \mathbf{e}_\mathrm{x}^\mathrm{b} } \right) +\left( {\frac{12\hbox {E}_\mathrm{S}^\mathrm{b} \mathrm{I}_\mathrm{y}^\mathrm{b} }{\left( {\mathrm{l}^{\mathrm{b}}} \right) ^{3}}} \right) \left( {\mathbf{e}_\mathrm{y}^\mathrm{b} \otimes \mathbf{e}_\mathrm{y}^\mathrm{b} } \right) \nonumber \\&+\left( {\frac{12\hbox {E}_\mathrm{S}^\mathrm{b} \mathrm{I}_\mathrm{z}^\mathrm{b} }{\left( {\hbox {l}^{\mathrm{b}}} \right) ^{3}}} \right) \left( {\mathbf{e}_\mathrm{z}^\mathrm{b} \otimes \mathbf{e}_\mathrm{z}^\mathrm{b} } \right) \end{aligned}$$
(42)
$$\begin{aligned} \mathbf{K}^{\mathrm{b}}_\mathrm{u}= & {} \frac{\hbox {E}_\mathrm{S}^\mathrm{b} \hbox {A}^{\mathrm{b}}}{\mathrm{L}}\left[ \left( {\frac{1}{\hbox {l}^{\mathrm{b}}}} \right) \left( {\mathbf{e}_\mathrm{x}^\mathrm{b} \otimes \left( {\mathbf{B}^{\mathrm{b}}-\mathbf{B}_\mathrm{o}^\mathrm{b} } \right) } \right) \cdot \left( {\mathbf{C.P}} \right) \right. \nonumber \\&\left. -\frac{\left( {\mathbf{B}^{\mathrm{b}}-\mathbf{B}_\mathrm{o}^\mathrm{b} } \right) \cdot \mathbf{e}_\mathrm{x}^\mathrm{b} }{\left( {\hbox {l}^{\mathrm{b}}} \right) ^{2}}\left( {\left( {\mathbf{e}_\mathrm{x}^\mathrm{b} \otimes \mathbf{B}^{\mathrm{b}}} \right) \cdot \left[ {\mathbf{\mathrm{I}+C.P}} \right] } \right) \right] \nonumber \\&+\left( {\frac{12\hbox {E}_\mathrm{S}^\mathrm{b} \mathrm{I}_\mathrm{y}^\mathrm{b} }{\left( {\hbox {l}^{\mathrm{b}}} \right) ^{3}}} \right) \left[ \left( \left( {\frac{1}{\hbox {l}^{\mathrm{b}}}} \right) \left( {\mathbf{e}_\mathrm{y}^\mathrm{b} \otimes \left( {\mathbf{B}^{\mathrm{b}}-\mathbf{B}_\mathrm{o}^\mathrm{b} } \right) } \right) \cdot \left( {{{\varvec{\Omega }} }_z \cdot \mathbf{C.P}} \right) \right. \right. \nonumber \\&\left. \left. -\frac{\left( {\mathbf{B}-\mathbf{B}_\mathrm{o}^\mathrm{b} } \right) \cdot \mathbf{e}_\mathrm{y}^\mathrm{b} }{\left( {\hbox {l}^{\mathrm{b}}} \right) ^{2}}\left( {\left( {\mathbf{e}_\mathrm{y}^\mathrm{b} \otimes \mathbf{B}^\mathrm{b}} \right) \cdot \left[ {\mathrm{I}+\mathbf{C.P}} \right] } \right) \right) \right] \nonumber \\&+\left( {\frac{12\hbox {E}_\mathrm{S}^\mathrm{b} \mathrm{I}_\mathrm{z}^\mathrm{b} }{\left( {\hbox {l}^\mathrm{b}} \right) ^{3}}} \right) \left[ {\left( {\begin{array}{l} \left( {\frac{1}{\hbox {l}^{\mathrm{b}}}} \right) \left( {\mathbf{e}_\mathrm{z}^\mathrm{b} \otimes \left( {\mathbf{B}^\mathrm{b}-\mathbf{B}_\mathrm{o}^\mathrm{b} } \right) } \right) \cdot \left( {{{\varvec{\Omega }} }_\mathrm{y} \cdot \mathbf{C.P}} \right) - \\ \frac{\left( {\mathbf{B}-\mathbf{B}_\mathrm{o}^\mathrm{b} } \right) \cdot \mathbf{e}_\mathrm{z}^\mathrm{b} }{\left( {\hbox {l}^\mathrm{b}} \right) ^{2}}\left( {\left( {\mathbf{e}_\mathrm{z}^\mathrm{b} \otimes \mathbf{B}^\mathrm{b}} \right) \cdot \left[ {\mathrm{I}+\mathbf{C.P}} \right] } \right) \\ \end{array}} \right) } \right] \nonumber \\ \end{aligned}$$
(43)
$$\begin{aligned} \mathbf{K}^{\mathrm{b}}_\upsigma= & {} \left[ {\left( {\frac{\hbox {F}_\mathrm{x}^\mathrm{b} }{\mathrm{l}^{\mathrm{b}}}} \right) \mathbf{C.P}} \right] +\left[ {\left( {\frac{2\hbox {F}_\mathrm{y}^\mathrm{b} }{\left( {\hbox {l}^\mathrm{b}} \right) ^{2}}} \right) \left( {\left( {\mathbf{e}_\mathrm{y}^\mathrm{b} \otimes \mathbf{B}^\mathrm{b}} \right) \cdot \left[ {\mathbf{\mathrm{I}}+\mathbf{C.P}} \right] } \right) } \right] \nonumber \\&+\left[ {\left( {\frac{2\hbox {F}_\mathrm{z}^\mathrm{b} }{\left( {\hbox {l}^\mathrm{b}} \right) ^{2}}} \right) \left( {\left( {\mathbf{e}_\mathrm{z}^\mathrm{b} \otimes \mathbf{B}^\mathrm{b}} \right) \cdot \left[ {\mathbf{\mathrm{I}}+\mathbf{C.P}} \right] } \right) } \right] \nonumber \\&+\left[ {\left( {\frac{\hbox {F}_\mathrm{y}^\mathrm{b} }{\hbox {l}^\mathrm{b}}} \right) \left( {{{\varvec{\Omega }} }_\mathrm{z} \cdot \mathbf{C.P}} \right) } \right] +\left[ {\left( {\frac{\hbox {F}_\mathrm{z}^\mathrm{b} }{\hbox {l}^\mathrm{b}}} \right) \left( {{{\varvec{\Omega }} }_\mathrm{y} \cdot \mathbf{C.P}} \right) } \right] \end{aligned}$$
(44)

The tangent couple stress stiffness matrix therein express as

$$\begin{aligned} \mathbf{K}^{\mathrm{b}}_{\mathrm{mo}}= & {} \left( {\frac{-6\hbox {E}_\mathrm{s}^\mathrm{b} \hbox {I}_\mathrm{y}^\mathrm{b} }{\left( {\hbox {l}^\mathrm{b}} \right) ^{2}}} \right) \left( {\mathbf{e}_\mathrm{y}^\mathrm{b} \otimes \mathbf{e}_\mathrm{z}^\mathrm{b} } \right) +\left( {\frac{-6\hbox {E}_\mathrm{s}^\mathrm{b} \hbox {I}_\mathrm{z}^\mathrm{b} }{\left( {\hbox {l}^\mathrm{b}} \right) ^{2}}} \right) \left( {\mathbf{e}_\mathrm{z}^\mathrm{b} \otimes \mathbf{e}_\mathrm{y}^\mathrm{b} } \right) \nonumber \\&+\left( {\frac{\hbox {E}_\mathrm{s}^\mathrm{b} \mathrm{J}^\mathrm{b} }{\mathrm{l}^\mathrm{b}}} \right) \left( {\mathbf{e}_\mathrm{x}^\mathrm{b} \otimes \mathbf{e}_\mathrm{x}^\mathrm{b} } \right) +\left( {\frac{\hbox {E}_\mathrm{s}^\mathrm{b} \mathrm{I}_\mathrm{y}^\mathrm{b} }{\mathrm{l}^{\mathrm{b}}}} \right) \left( {\mathbf{e}_\mathrm{y}^\mathrm{b} \otimes \mathbf{e}_\mathrm{y}^\mathrm{b} } \right) \nonumber \\&+\left( {\frac{\hbox {E}_\mathrm{s}^\mathrm{b} \mathrm{I}_\mathrm{z}^\mathrm{b} }{\mathrm{l}^\mathrm{b}}} \right) \left( {\mathbf{e}_\mathrm{z}^\mathrm{b} \otimes \mathbf{e}_\mathrm{z}^\mathrm{b} } \right) \end{aligned}$$
(45)
$$\begin{aligned} \mathbf{K}^\mathrm{b}_\mathrm{m}= & {} \left[ {\left( {\frac{\hbox {M}_\mathrm{x}^{\mathrm{E}\left( \mathrm{b} \right) } }{\hbox {l}^\mathrm{b}}} \right) \mathbf{C}\cdot \mathbf{P}+\left( {\frac{\hbox {M}_\mathrm{x}^{\mathrm{O}\left( \mathrm{b} \right) } }{\hbox {l}^\mathrm{b}}} \right) \mathbf{C}\cdot \mathbf{P}} \right] \nonumber \\&+\left[ {\left( {\frac{\hbox {M}_\mathrm{y}^{\mathrm{E}\left( \mathrm{b} \right) } }{\hbox {l}^\mathrm{b}}} \right) {{\varvec{\Omega }} }_\mathrm{z} \cdot \mathbf{C}\cdot \mathbf{P}+\left( {\frac{\hbox {M}_\mathrm{y}^{\mathrm{O}\left( \mathrm{b} \right) } }{\hbox {l}^{\mathrm{b}}}} \right) {{\varvec{\Omega }} }_\mathrm{z} \cdot \mathbf{C}\cdot \mathbf{P}} \right] \nonumber \\&+\left[ {\left( {\frac{\hbox {M}_\mathrm{z}^{\mathrm{E}\left( \mathrm{b} \right) } }{\hbox {l}^\mathrm{b}}} \right) {{\varvec{\Omega }} }_\mathrm{y} \cdot \mathbf{C}\cdot \mathbf{P}+\left( {\frac{\hbox {M}_\mathrm{z}^{\mathrm{O}\left( \mathrm{b} \right) } }{\hbox {l}^\mathrm{b}}} \right) {{\varvec{\Omega }} }_\mathrm{y} \cdot \mathbf{C}\cdot \mathbf{P}} \right] \nonumber \\ \end{aligned}$$
(46)

Appendix 3: Geometrical and mechanical parameters for the considered textile performs

The geometrical parameters for plain weave and twill are given in Table 3.

Mechanical properties of weft and warp made of PET are given in Table 4; we intentionally choose very different moduli to represent an unbalanced fabric, leading to an expected anisotropic behavior.

The mechanical properties of the yarns are the same for both unit cells. The tensile, flexural, and torsion rigidities of the beam segments are given in Table 5.

Furthermore, the geometric and material parameters for the contact beam are

$$\begin{aligned} L_{c_{1,2} }= & {} Lf_1 \textit{Sin}\theta _f,Lp_1 \textit{Sin}\theta _p, r_c =\frac{r_f +r_p }{2}, G_{sc}\\= & {} \frac{G_{sf} +G_{pf} }{2},\; \hbox {and}\;E_{sc} =\frac{E_{sf} +E_{pf} }{2} \end{aligned}$$

where \(L_{c1,2}\), \(r_{c}\), \(G_{sc}\), and \(E_{sc}\), represent the lengths, radius, shear and Young’s modulus of the contact beams respectively (beams connecting the warp and weft yarns at their crossing points). As an assumption, we take the contact beam with radius and mechanical modulus as average values from the weft and warp corresponding values.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ElNady, K., Goda, I. & Ganghoffer, JF. Computation of the effective nonlinear mechanical response of lattice materials considering geometrical nonlinearities. Comput Mech 58, 957–979 (2016). https://doi.org/10.1007/s00466-016-1326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1326-7

Keywords

Navigation