Skip to main content
Log in

A multi-patch nonsingular isogeometric boundary element method using trimmed elements

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

One of the major goals of isogeometric analysis is direct design-to-analysis, i.e., using computer-aided design (CAD) files for analysis without the need for mesh generation. One of the primary obstacles to achieving this goal is CAD models are based on surfaces, and not volumes. The boundary element method (BEM) circumvents this difficulty by directly working with the surfaces. The standard basis functions in CAD are trimmed nonuniform rational B-spline (NURBS). NURBS patches are the tensor product of one-dimensional NURBS, making the construction of arbitrary surfaces difficult. Trimmed NURBS use curves to trim away regions of the patch to obtain the desired shape. By coupling trimmed NURBS with a nonsingular BEM, the formulation proposed here comes close achieving the goal of direct design to analysis. Example calculations demonstrate its efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230(11):4137–4152

    Article  MATH  MathSciNet  Google Scholar 

  2. Azegami H, Fukumoto S, Aoyama T (2013) Shape optimization of continua using NURBS as basis functions. Struct Multidiscip Optim 47(2):247–258

    Article  MATH  MathSciNet  Google Scholar 

  3. Banerjee PK, Butterfield R (1978) The boundary element method for engineers, vol 17. Pentech Press, London

    Google Scholar 

  4. Banerjee PK, Butterfield R (1981) Boundary element methods in engineering science, vol 17. McGraw-Hill, London

    MATH  Google Scholar 

  5. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5):229–263

    Article  MATH  MathSciNet  Google Scholar 

  6. Bazilevs Y, Hsu MC, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249:28–41

    Article  MathSciNet  Google Scholar 

  7. Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199(13):780–790

    Article  MATH  MathSciNet  Google Scholar 

  8. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu MC, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21(4):359–398

  9. Beer G, Smith I, Duenser C (2008) The boundary element method with programming: for engineers and scientists. Springer, Berlin

    Google Scholar 

  10. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199:276–289

    Article  MATH  MathSciNet  Google Scholar 

  11. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200:1367–1378

    Article  MATH  MathSciNet  Google Scholar 

  12. Benson DJ, Hartmann S, Bazilevs Y, Hsu M-C, Hughes TJR (2013) Blended isogeometric shells. Comput Methods Appl Mech Eng 255:133–146

    Article  MATH  MathSciNet  Google Scholar 

  13. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Article  MathSciNet  Google Scholar 

  14. Brivadis E, Buffa A, Wohlmuth B, Wunderlich L (2015) Isogeometric mortar methods. Comput Methods Appl Mech Eng 284:292–319

    Article  MathSciNet  Google Scholar 

  15. Buffa A, Sangalli G, Vázquez R (2014) Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations. J Comput Phys 257:1291–1320

    Article  MathSciNet  Google Scholar 

  16. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester

    Book  Google Scholar 

  17. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195(41):5257–5296

    Article  MATH  MathSciNet  Google Scholar 

  18. De Luycker E, Benson DJ, Belytschko T, Bazilevs Y, Hsu M-C (2011) X-FEM in isogeometric analysis for linear fracture mechanics. Int J Numer Methods Eng 87:541–565

    Article  MATH  Google Scholar 

  19. Dedè L, Borden MJ, Hughes TJR (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Methods Eng 19(3):427–465

    Article  MathSciNet  Google Scholar 

  20. Dittmann M, Franke M, Temizer İ, Hesch C (2014) Isogeometric Analysis and thermomechanical Mortar contact problems. Comput Methods Appl Mech Eng 274:192–212

    Article  MATH  MathSciNet  Google Scholar 

  21. Felippa CA (2004) Introduction to finite element methods. University of Colorado, Boulder. http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d

  22. Gao XW (2002) The radial integration method for evaluation of domain integrals with boundary-only discretization. Eng Anal Bound Elem 26(10):905–916

    Article  MATH  Google Scholar 

  23. Gao XW (2010) An effective method for numerical evaluation of general 2D and 3D high order singular boundary integrals. Comput Methods Appl Mech Eng 199(45):2856–2864

    Article  MATH  Google Scholar 

  24. Gao XW, Davies TG (2002) Boundary element programming in mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Ginnis AI, Kostas KV, Politis CG, Kaklis PD, Belibassakis KA, Gerostathis ThP, Scott MA, Hughes TJR (2014) Isogeometric boundary-element analysis for the wave-resistance problem using T-splines. Comput Methods Appl Mech Eng 279:425–439

  26. Gu JL, Zhang JM, Li GY (2012) Isogeometric analysis in BIE for 3-D potential problem. Eng Anal Bound Elem 36(5):858–865

    Article  MathSciNet  Google Scholar 

  27. Guiggiani M, Gigante A (1990) A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method. J Appl Mech 57(4):906–915

    Article  MATH  MathSciNet  Google Scholar 

  28. Guiggiani M, Krishnasamy G, Rudolphi TJ, Rizzo FJ (1992) A general algorithm for the numerical solution of hypersingular boundary integral equations. J Appl Mech 59(3):604–614

    Article  MATH  MathSciNet  Google Scholar 

  29. Heltai L, Arroyo M, DeSimone A (2014) Nonsingular isogeometric boundary element method for Stokes flows in 3D. Comput Methods Appl Mech Eng 268:514–539

    Article  MATH  MathSciNet  Google Scholar 

  30. Speleers H, Manni C, Pelosi F (2013) From NURBS to NURPS geometries. Comput Methods Appl Mech Eng 255:238–254

    Article  MATH  MathSciNet  Google Scholar 

  31. Speleers H, Manni C, Pelosi F, Sampoli ML (2012) Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems. Comput Methods Appl Mech Eng 221:132–148

    Article  MathSciNet  Google Scholar 

  32. Hsu MC, Bazilevs Y (2012) Fluid–structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50(6):821–833

    Article  MATH  MathSciNet  Google Scholar 

  33. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  34. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Courier Dover Publications, New York

    Google Scholar 

  35. Johnston PR, Elliott D (2005) A sinh transformation for evaluating nearly singular boundary element integrals. Int J Numer Methods Eng 62(4):564–578

    Article  MATH  MathSciNet  Google Scholar 

  36. Kane JH, Gupta A, Saigal S (1989) Reusable intrinsic sample point (RISP) algorithm for the efficient numerical integration of three dimensional curved boundary elements. Int J Numer Methods Eng 28(7):1661–1676

    Article  MATH  Google Scholar 

  37. Kim HJ, Seo YD, Youn SK (2009) Isogeometric analysis for trimmed CAD surfaces. Comput Methods Appl Mech Eng 198(37):2982–2995

    Article  MATH  Google Scholar 

  38. Kim HJ, Seo YD, Youn SK (2010) Isogeometric analysis with trimming technique for problems of arbitrary complex topology. Comput Methods Appl Mech Eng 199(45):2796–2812

    Article  MATH  MathSciNet  Google Scholar 

  39. Klaseboer E, Fernandez CR, Khoo BC (2009) A note on true desingularisation of boundary integral methods for three-dimensional potential problems. Eng Anal Bound Elem 33(6):796–801

    Article  MATH  MathSciNet  Google Scholar 

  40. Klaseboer E, Sun Q, Chan DYC (2012) Non-singular boundary integral methods for fluid mechanics applications. J Fluid Mech 696:468–478

    Article  MATH  MathSciNet  Google Scholar 

  41. Lachat JC, Watson JO (1976) Effective numerical treatment of boundary integral equations: a formulation for three-dimensional elastostatics. Int J Numer Methods Eng 10(5):991–1005

    Article  MATH  Google Scholar 

  42. Lasserre J (1998) Integration on a convex polytope. Proc Am Math Soc 126(8):2433–2441

    Article  MATH  MathSciNet  Google Scholar 

  43. Li K, Qian XP (2011) Isogeometric analysis and shape optimization via boundary integral. Comput Aided Des 43(11):1427–1437

    Article  MathSciNet  Google Scholar 

  44. Liu J, Dedè L, Evans JA, Borden MJ, Hughes TJR (2013) Isogeometric analysis of the advective Cahn–Hilliard equation: spinodal decomposition under shear flow. J Comput Phys 242:321–350

    Article  MATH  MathSciNet  Google Scholar 

  45. Liu YJ (2000) On the simple-solution method and non-singular nature of the BIE/BEM—a review and some new results. Eng Anal Bound Elem 24(10):789–795

    Article  MATH  Google Scholar 

  46. Liu YJ, Rudolphi TJ (1991) Some identities for fundamental solutions and their applications to weakly-singular boundary element formulations. Eng Anal Bound Elem 8(6):301–311

    Article  Google Scholar 

  47. Liu YJ, Rudolphi TJ (1999) New identities for fundamental solutions and their applications to non-singular boundary element formulations. Comput Mech 24(4):286–292

    Article  MATH  MathSciNet  Google Scholar 

  48. De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87:1278–1300

    MATH  Google Scholar 

  49. Lv JH, Miao Y, Zhu HP (2014) The distance sinh transformation for the numerical evaluation of nearly singular integrals over curved surface elements. Comput Mech 53(2):359–367

    Article  MATH  MathSciNet  Google Scholar 

  50. Ma H, Kamiya N (2002) Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method. Eng Anal Bound Elem 26(4):329–339

    Article  MATH  Google Scholar 

  51. Nagy AP, Benson DJ (2015) On the numerical integration of trimmed isogeometric elements. Comput Methods Appl Mech Eng 284:165–185

    Article  MathSciNet  Google Scholar 

  52. Nguyen VP, Kerfriden P, Brino M, Bordas SPA, Bonisoli E (2014) Nitsches method for two and three dimensional NURBS patch coupling. Comput Mech 53(6):1163–1182

    Article  MATH  MathSciNet  Google Scholar 

  53. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger KU, Bazilevs Y, Rabczuk T (2011) Rotation free isogeometric thin shell analysis using PHT-splines. Comput Methods Appl Mech Eng 200(47):3410–3424

    Article  MATH  Google Scholar 

  54. Niu ZR, Wendland WL, Wang XX, Zhou HL (2005) A semi-analytical algorithm for the evaluation of the nearly singular integrals in three-dimensional boundary element methods. Comput Methods Appl Mech Eng 194(9):1057–1074

    Article  MATH  Google Scholar 

  55. Peake MJ, Trevelyan J, Coates G (2013) Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems. Comput Methods Appl Mech Eng 259:93–102

  56. Piegl L, Tiller W (1997) The NURBS book (monographs in visual communication). Springer, Berlin

  57. Qian XP (2010) Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput Methods Appl Mech Eng 199(29):2059–2071

    Article  MATH  Google Scholar 

  58. Raknes SB, Deng X, Bazilevs Y, Benson DJ, Mathisen KM, Kvamsdal T (2013) Isogeometric rotation-free bending-stabilized cables: statics, dynamics, bending strips and coupling with shells. Comput Methods Appl Mech Eng 263:127–143

    Article  MATH  MathSciNet  Google Scholar 

  59. Rizzo FJ, Shippy DJ (1977) An advanced boundary integral equation method for three-dimensional thermoelasticity. Int J Numer Methods Eng 11(11):1753–1768

    Article  MATH  Google Scholar 

  60. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Methods Eng 95(10):811–846

    Article  MathSciNet  Google Scholar 

  61. Ruess M, Schillinger D, Özcan AI, Rank E (2014) Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput Methods Appl Mech Eng 269:46–71

    Article  MATH  Google Scholar 

  62. Schillinger D, Dede L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJR (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249:116–150

    Article  MathSciNet  Google Scholar 

  63. Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng 88(2):126–156

    Article  MATH  MathSciNet  Google Scholar 

  64. Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213:206–222

    Article  MathSciNet  Google Scholar 

  65. Scott MA, Simpson RN, Evans JA, Lipton S, Bordas SPA, Hughes TJR, Sederberg TW (2013) Isogeometric boundary element analysis using unstructured T-splines. Comput Methods Appl Mech Eng 254:197–221

    Article  MATH  MathSciNet  Google Scholar 

  66. Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and t-NURCCs. ACM Trans Graph 22(3):477–484

    Article  Google Scholar 

  67. Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199(49):3270–3296

    Article  MATH  MathSciNet  Google Scholar 

  68. Sevilla R, Fernández-Méndez S, Huerta A (2008) NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 76(1):56–83

    Article  MATH  Google Scholar 

  69. Simpson RN, Bordas SPA, Trevelyan J, Rabczuk T (2012) A two-dimensional isogeometric boundary element method for elastostatic analysis. Comput Methods Appl Mech Eng 209:87–100

  70. Takahashi T, Matsumoto T (2012) An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions. Eng Anal Bound Elem 36(12):1766–1775

  71. Telles JCF (1987) A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals. Int J Numer Methods Eng 24(5):959–973

    Article  MATH  Google Scholar 

  72. Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 223–224:173–185

    Article  MathSciNet  Google Scholar 

  73. Vuong A-V, Giannelli C, Jüttler B, Simeon B (2011) A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput Methods Appl Mech Eng 200(49):3554–3567

    Article  MATH  Google Scholar 

  74. Wang YJ, Benson DJ (2015) Multi-patch nonsingular isogeometric boundary element analysis in 3D. Comput Methods Appl Mech Eng

  75. Wang P, Xu JL, Deng JS, Chen FL (2011) Adaptive isogeometric analysis using rational PHT-splines. Comput Aided Des 43(11):1438–1448

    Article  Google Scholar 

  76. Wang YJ, Wang QF, Wang G, Huang YB, Wang ST (2013) An adaptive dual-information FMBEM for 3D elasticity and its GPU implementation. Eng Anal Bound Elem 37(2):236–249

  77. Wang YW, Huang ZD, Zheng Y, Zhang SG (2013) Isogeometric analysis for compound B-spline surfaces. Comput Methods Appl Mech Eng 261:1–15

    Article  MathSciNet  Google Scholar 

  78. Wang YJ, Wang QF, Deng XW, Xia ZH, Yan JH, Xu H (2015) Graphics processing unit (GPU) accelerated fast multipole BEM with level-skip M2L for 3D elasticity problems. Adv Eng Softw 82:105–118

    Article  Google Scholar 

  79. Xie GZ, Zhang JM, Dong YQ, Huang C, Li GY (2014) An improved exponential transformation for nearly singular boundary element integrals in elasticity problems. Int J Solids Struct 51(6):1322–1329

    Article  Google Scholar 

  80. Ye WJ (2008) A new transformation technique for evaluating nearly singular integrals. Comput Mech 42(3):457–466

    Article  MATH  Google Scholar 

  81. Yun BI (2006) A generalized non-linear transformation for evaluating singular integrals. Int J Numer Methods Eng 65(12):1947–1969

    Article  MATH  Google Scholar 

  82. Zhou HL, Niu ZR, Cheng CZ, Guan ZW (2008) Analytical integral algorithm applied to boundary layer effect and thin body effect in BEM for anisotropic potential problems. Comput Struct 86(15):1656–1671

    Article  Google Scholar 

Download references

Acknowledgments

The support for this research and Yingjun Wang by NSF Grant CMMI-1068106 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Benson.

Appendix: Evaluation of boundary stresses and displacement gradients

Appendix: Evaluation of boundary stresses and displacement gradients

The boundary stresses in the IGABEM may be derived from the traction-recovery method [24]. Following their development, a local Cartesian coordinate system \(\overline{x}_{i}\) is defined as shown in Fig. 21 (global coordinate system is \(x_{i}\)), where \(\overline{x}_{1}\) and \(\overline{x}_{2}\) are tangential to the surface and \(\overline{x}_{3}\) is directed in the outward normal direction. In order to concisely describe the formulation, the notation \((\xi _{1},\,\xi _{2})\) replaces \((\xi ,\,\eta )\) for the intrinsic coordinates.

Fig. 21
figure 21

Local orthogonal system for evaluating the derivatives of displacements

The derivatives of the intrinsic coordinates are

$$\begin{aligned}&\frac{\partial {\xi _{1}}}{\partial {\overline{x}_{1}}}=\frac{1}{m_{1}},\quad \frac{\partial {\xi _{1}}}{\partial {\overline{x}_{2}}}=\frac{-\cos \theta }{|m_{1}|\sin \theta },\quad \frac{\partial {\xi _{2}}}{\partial {\overline{x}_{1}}}=0,\nonumber \\&\qquad \frac{\partial {\xi _{2}}}{\partial {\overline{x}_{2}}}=\frac{1}{|m_{2}|\sin \theta }, \end{aligned}$$
(33)

where \(m_{k}\) and the angle \(\theta \) are given as

$$\begin{aligned}&\left| m_{k}\right| =\sqrt{\left( \frac{\partial {x_{1}}}{\partial {\xi _{k}}}\right) ^{2}+\left( \frac{\partial {x_{2}}}{\partial {\xi _{k}}}\right) ^{2}+\left( \frac{\partial {x_{3}}}{\partial {\xi _{k}}}\right) ^{2}},\nonumber \\&\cos \theta =\frac{1}{|m_{1}||m_{2}|}\frac{\partial {x_{i}}}{\partial {\xi _{1}}}\frac{\partial {x_{i}}}{\partial {\xi _{2}}}. \end{aligned}$$
(34)

The local displacements and tractions are expressed in terms of the global displacements and tractions

$$\begin{aligned} \overline{u}_{i}=L_{ij}u_{j},\quad \overline{t}_{i}=L_{ij}t_{j}, \end{aligned}$$
(35)

in which \(L_{ij}\) are entries of the rotation matrix \(\varvec{L}\)

$$\begin{aligned} \varvec{L}= \left[ \begin{array}{l@{\quad }l@{\quad }l} \frac{1}{|m_{1}|}\frac{\partial {x_{1}}}{\partial {\xi _{1}}} &{} \ \ \frac{1}{|m_{1}|}\frac{\partial {x_{2}}}{\partial {\xi _{1}}} &{} \ \ \frac{1}{|m_{1}|}\frac{\partial {x_{3}}}{\partial {\xi _{1}}} \\ n_{2}L_{13}-n_{3}L_{12} &{} \ \ n_{3}L_{11}-n_{1}L_{13} &{} \ \ n_{1}L_{12}-n_{2}L_{11} \\ n_{1} &{} \ \ n_{2} &{} \ \ n_{3} \end{array}\right] , \end{aligned}$$
(36)

where \(n_{1},\,n_{2},\) and \(n_{3}\) are the components of unit outward normal.

After some lengthy algebra using Hooke’s law, the boundary stress may be expressed in terms of the displacements and tractions of control points as

$$\begin{aligned} \sigma _{mn}=C_{mnj\alpha }u_{j}^{\alpha }+D_{mnj\alpha }t_{j}^{\alpha }, \end{aligned}$$
(37)

where the coefficients \(C_{mnj\alpha }\) and \(D_{mnj\alpha }\) are

$$\begin{aligned} C_{mnj\alpha }= & {} 2\mu \left\{ \frac{1}{1-\nu }\left[ L_{1m}L_{1n}\left( \frac{\partial {\xi _{k}}}{\partial {\overline{x}_{1}}}L_{1j}+\nu \frac{\partial {\xi _{k}}}{\partial {\overline{x}_{2}}}L_{2j}\right) \right. \right. \nonumber \\&+\,\left. L_{2m}L_{2n} \left( \frac{\partial {\xi _{k}}}{\partial {\overline{x}_{2}}}L_{2j}+\nu \frac{\partial {\xi _{k}}}{\partial {\overline{x}_{1}}}L_{1j} \right) \right] \nonumber \\&+\,\frac{1}{2}\left( L_{1m}L_{2n}+L_{2m}L_{1n}\right) \nonumber \\&\left. \left( \frac{\partial {\xi _{k}}}{\partial {\overline{x}_{1}}}L_{2j}+\frac{\partial {\xi _{k}}}{\partial {\overline{x}_{2}}}L_{1j} \right) \right\} \frac{\partial {N_{\alpha }}}{\partial {\xi _{k}}}, \end{aligned}$$
(38)
$$\begin{aligned} D_{mnj\alpha }= & {} \left( L_{3m}L_{1n}+L_{1m}L_{3n}\right) L_{1j}\nonumber \\&+\, \left( L_{2m}L_{3n}+L_{3m}L_{2n}\right) L_{2j} \nonumber \\&+\,\left( \frac{\nu }{1-\nu }\delta _{mn}+\frac{1-2\nu }{1-\nu }L_{3m}L_{3n} \right) L_{3j}, \end{aligned}$$
(39)

where \(N_{\alpha }\) is the basis function associated with the \(\alpha \)th control point of the element [refer to Eqs. (16) and (17)], \(\nu \) is Poisson’s ratio, \(\mu \) is shear modulus, and \(\delta _{ij}\) is Kronecker delta.

With the help of the local coordinate system in Fig. 21, the derivatives of global displacement can be expressed as

$$\begin{aligned} u_{m,n}=L_{rm}L_{sn}\overline{u}_{r,s}. \end{aligned}$$
(40)

When the subscript j does not equal 3, the local derivatives of displacements are

$$\begin{aligned} \overline{u}_{i,j}=\frac{\partial {\overline{u}_{i}}}{\partial {\overline{x}_{j}}}=\frac{\partial {\overline{u}_{i}}}{\partial {\xi _{k}}}\frac{\partial {\xi _{k}}}{\partial {\overline{x}_{j}}}, \end{aligned}$$
(41)

where the subscript k ranges from 1 to 2. When the subscript j equals to 3, according to Hooke’s law and \(\overline{\sigma }_{i3}=\overline{t}_{i},\) the local derivatives of the displacements are

$$\begin{aligned}&\frac{\partial {\overline{u}_{1}}}{\partial {\overline{x}_{3}}}=\frac{\overline{t}_{1}}{\mu }-\left( \frac{\partial {\overline{u}_{3}}}{\partial {\xi _{k}}}\frac{\partial {\xi _{k}}}{\partial {\overline{x}_{1}}}\right) , \nonumber \\&\frac{\partial {\overline{u}_{2}}}{\partial {\overline{x}_{3}}}=\frac{\overline{t}_{2}}{\mu }-\left( \frac{\partial {\overline{u}_{3}}}{\partial {\xi _{k}}}\frac{\partial {\xi _{k}}}{\partial {\overline{x}_{2}}}\right) , \nonumber \\&\frac{\partial {\overline{u}_{3}}}{\partial {\overline{x}_{3}}}=\frac{1-2\nu }{\mu (2-2\nu )}\overline{t}_{3}-\frac{\nu }{1-\nu }\left( \frac{\partial {\overline{u}_{1}}}{\partial {\xi _{k}}}\frac{\partial {\xi _{k}}}{\partial {\overline{x}_{1}}}+\frac{\partial {\overline{u}_{2}}}{\partial {\xi _{k}}}\frac{\partial {\xi _{k}}}{\partial {\overline{x}_{2}}}\right) .\nonumber \\ \end{aligned}$$
(42)

Using Eqs. (16), (17), (35), (40)–(42), the derivatives of displacements are expressed in terms of the displacements and tractions of control points

$$\begin{aligned} u_{m,n}=A_{mnj\alpha }u_{j}^{\alpha }+B_{mnj\alpha }t_{j}^{\alpha }, \end{aligned}$$
(43)

where the coefficient \(A_{mnj\alpha }\) is

$$\begin{aligned} A_{mnj\alpha }= & {} \left( L_{1m}L_{1j}+L_{2m}L_{2j}+L_{3m}L_{3j}\right) L_{1n}c_{\alpha 1} \nonumber \\&+\,\left( \frac{\nu }{\nu -1}L_{3m}+L_{1j}-L_{1m}L_{3j} \right) L_{3n}c_{\alpha 1} \nonumber \\&+\,\left( L_{1m}L_{1j}+L_{2m}L_{2j}+L_{3m}L_{3j}\right) L_{2n}c_{\alpha 2}\nonumber \\&+\,\left( \frac{\nu }{\nu -1}L_{3m}+L_{2j}-L_{2m}L_{3j} \right) L_{3n}c_{\alpha 2},\nonumber \\ \end{aligned}$$
(44)

where coefficients \(c_{\alpha 1}\) and \(c_{\alpha 2}\) are

$$\begin{aligned} c_{\alpha 1}= & {} \frac{\partial {\xi _{1}}}{\partial {\overline{x}_{1}}}\frac{\partial {N_{\alpha }}}{\partial {\xi _{1}}}+\frac{\partial {\xi _{2}}}{\partial {\overline{x}_{1}}}\frac{\partial {N_{\alpha }}}{\partial {\xi _{2}}}, \end{aligned}$$
(45)
$$\begin{aligned} c_{\alpha 2}= & {} \frac{\partial {\xi _{1}}}{\partial {\overline{x}_{2}}}\frac{\partial {N_{\alpha }}}{\partial {\xi _{1}}}+\frac{\partial {\xi _{2}}}{\partial {\overline{x}_{2}}}\frac{\partial {N_{\alpha }}}{\partial {\xi _{2}}}, \end{aligned}$$
(46)

and the coefficient \(B_{mnj\alpha }\) is

$$\begin{aligned} B_{mnj\alpha }= & {} \frac{L_{3n}}{\mu }\left( L_{1m}L_{1j}+L_{2m}L_{2j}\right. \nonumber \\&\left. +\frac{1-2\nu }{2(1-\nu )}L_{3m}L_{3j}\right) N_{\alpha }. \end{aligned}$$
(47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Benson, D.J. & Nagy, A.P. A multi-patch nonsingular isogeometric boundary element method using trimmed elements. Comput Mech 56, 173–191 (2015). https://doi.org/10.1007/s00466-015-1165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1165-y

Keywords

Navigation