Skip to main content
Log in

A rate-dependent stochastic damage–plasticity model for quasi-brittle materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work, a rate-dependent model for the simulation of quasi-brittle materials experiencing damage and randomness is proposed. The bi-scalar plastic damage model is developed as the theoretical framework with the damage and the plasticity opening for further developments. The governing physical reason of the material rate-dependency under relatively low strain rates, which is defined as the Strain Delay Effect, is modeled by a differential system. Then the description of damage is established by further implementing the rate-dependent differential system into the random damage evolution. To reproduce the evolution of plasticity under a variety of stress conditions, a multi-variable phenomenological plastic model is proposed and the description of plasticity is then formulated. An explicit integration algorithm is developed to implement the proposed model in the structural simulation. The model results are validated by a series of numerical tests that cover a wide variety of stress conditions and loading rates. The proposed model and algorithm offer a package solution for the nonlinear dynamic structural simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abrams DA (1917) Effect of the rate of application of load on the compressive strength of concrete. ASTM J 17:364–377

    Google Scholar 

  2. Bazant ZP, Belytschko T (1985) Wave propagation in a strain-softening bar: exact solution. J Eng Mech 111(3):381–389. doi:10.1061/(ASCE)0733-9399(1985)111:3(381)

  3. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continuia and structures. John Wiley & Sons, LTD, New York

    Google Scholar 

  4. Bischoff PH, Perry SH (1991) Compressive behavior of concrete at high-strain rates. Mater Struct 24(144):425–450

    Article  Google Scholar 

  5. de Borst R (2001) Some recent issues in computational failure mechanics. Int J Numer Methods Eng 52(1–2):63–95 5th US National Congress on Computational Mechanics, Univ Colorado, Boulder, Co. Aug 04–06, 1999

  6. Bresler B, Bertero VV (1975) Influence of high strain rate and cyclic loading of unconfined and confined concrete in compression. In: the 2nd Canadian Conference on Earthquake Engineering, pp. 1–13. Hamilton, Ontario

  7. Buyukozturk O, Tseng T (1984) Concrete in biaxial cyclic compression. J Struct Eng 110(3):461–476

    Article  Google Scholar 

  8. Dong YL, Xie HP, Zhao P (1997) Experimental study and constitutive model on concrete under compression with different strain rate. J Hydraul Eng 7:72–77

    Google Scholar 

  9. Dube JF, Pijaudier-Cabot G, La Borderie C (1996) Rate dependent damage for concrete in dynamics. J Eng Mech ASCE 122(10):939–947

    Article  Google Scholar 

  10. Duvaut G, Lions JL (1976) Inequalities in mechanics and physics. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  11. Faria R, Oliver J, Cervera M (1998) A strain-based plastic viscous-damage model for massive concrete structures. Int J Solids Struct 35(14):1533–1558

    Article  MATH  Google Scholar 

  12. Freund LB (1973) Crack-propagation in an elastic solid subjected to general loading. 3. Stress wave loading. J Mech Phys Solids 21(2):47–61

    Article  MATH  Google Scholar 

  13. Hatano T, Tsutsumi H (1960) Dynamic compressive deformation and failure of concrete under earthquake load. IBID pp. 1963–1978

  14. Hsu TTC, Mo YL (2010) Unified theory of concrete structures. John Wiley, Singapore

    Book  Google Scholar 

  15. Jason L, Huerta A, Pijaudier-Cabot G, Ghavamian S (2006) An elastic plastic damage formulation for concrete: application to elementary tests and comparison with an isotropic damage model. Comput Methods Appl Mech Eng 195(52):7077–7092. doi:10.1016/j.cma.2005.04.017

    Article  MATH  Google Scholar 

  16. Ju JW (1989) On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int J Solids Struct 25(7):803–833

    Article  MATH  Google Scholar 

  17. Kandarpa S, Kirkner DJ, Spencer BF (1996) Stochastic damage model for brittle materials subjected to monotonic loading. J Eng Mech ASCE 122(8):788–795

    Article  Google Scholar 

  18. Karsan ID, Jirsa JO (1969) Behavior of concrete under compressive loadings. J Struct Div 95(12):2543–2563

    Google Scholar 

  19. Klepaczko J, Brara A (2001) An experimental method for dynamic tensile testing of concrete by spalling. Int J Impact Eng 25(4):387–409. doi:10.1016/S0734-743X(00)00050-6

    Article  Google Scholar 

  20. Krajcinovic D, Fanella D (1986) A micromechanical damage model for concrete. Eng Fract Mech 25(5–6):585–596

    Article  Google Scholar 

  21. Lee JH, Fenves G (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech ASCE 124(8):892–900

    Article  Google Scholar 

  22. Lemaitre J (1971) Evaluation of dissipation and damage in metals submitted to dynamic loading. In: ICAM-1. Japan

  23. Li J, Ren XD (2009) Stochastic damage model for concrete based on energy equivalent strain. Int J Solids Struct 46(11–12):2407–2419. doi:10.1016/j.ijsolstr.2009.01.024

    Article  MATH  Google Scholar 

  24. Lorefice R, Etse G, Carol I (2008) Viscoplastic approach for rate-dependent failure analysis of concrete joints and interfaces. Int J Solids Struct 45(9):2686–2705. doi:10.1016/j.ijsolstr.2007.12.016

    Article  MATH  Google Scholar 

  25. Malvar LJ, Ross CA (1998) Review of strain rate effects for concrete in tension. ACI Mater J 95(6):735–739

    Google Scholar 

  26. Needleman A (1988) Material rate dependence and mesh sensitivity in localization problems. Comput Methods Appl Mech Eng 67(1):69–85. doi:10.1016/0045-7825(88)90069-2

    Article  MATH  Google Scholar 

  27. Niazi M, Wisselink H, Meinders T (2013) Viscoplastic regularization of local damage models: revisited. Comput Mech 51(2):203–216. doi:10.1007/s00466-012-0717-7

    Article  MATH  Google Scholar 

  28. Ozbolt J, Sharma A (2011) Numerical simulation of reinforced concrete beams with different shear reinforcements under dynamic impact loads. Int J Impact Eng 38(12):940–950. doi:10.1016/j.ijimpeng.2011.08.003

    Article  Google Scholar 

  29. Peerlings R, deBorst R, Brekelmans W, deVree J, Spee I (1996) Some observations on localisation in non-local and gradient damage models. Eur J Mech A Solids 15(6):937–953

    MATH  Google Scholar 

  30. Perzyna P (1966) Fundamental problems in viscoplasticity. In: Advances in applied mechanics, Vol. 9. Academic Press Inc., New York, pp 243–377

  31. Ren XD, Li J (2012) Dynamic fracture in irregularly structured systems. Phys Rev E 85: 055102. DOI:10.1103/PhysRevE.85.055102

  32. Ren XD, Li J (2013) A unified dynamic model for concrete considering viscoplasticity and rate-dependent damage. Int J Damage Mech 22(4):530–555. doi:10.1177/1056789512455968

    Article  Google Scholar 

  33. Ren XD, Yang WZ, Zhou Y, Li J (2008) Behavior of high-performance concrete under uniaxial and biaxial loading. ACI Mater J 105(6):548–557

    Google Scholar 

  34. Reynolds O (1886) On the theory of lubrication and its application to mr. beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philos Trans R Soc Lond 177:157–234. doi:10.1098/rstl.1886.0005

    Article  Google Scholar 

  35. Ross CA, Tedesco JW, Kuennen ST (1995) Effects of strain-rate on concrete strength. ACI Mater J 92(1):37–47

    Google Scholar 

  36. Saatci S, Vecchio FJ (2009) Effects of shear mechanisms on impact behavior of reinforced concrete beams. ACI Struct J 106(1):78–86

    Google Scholar 

  37. Simo JC, Hughes T (1998) Computational inelasticity. Springer-Verlag, New York

    MATH  Google Scholar 

  38. Simo JC, Ju JW (1987) Strain-based and stress-based continuum damage models. 1. Formulation. Int J Solids Struct 23(7):821– 840

    Article  MATH  Google Scholar 

  39. Sloan S, Abbo A, Sheng D (2001) Refined explicit integration of elastoplastic models with automatic error control. Eng Comput 18(1–2):121–154. doi:10.1108/02644400110365842

  40. Sloan SW (1987) Substepping schemes for the numerical integration of elastoplastic stress–strain relations. Int J Numer Methods Eng 24(5):893–911. doi:10.1002/nme.1620240505

    Article  MATH  MathSciNet  Google Scholar 

  41. Sparks PR, Menzies JB (1973) The effect of the rate of the loading upon the static fatigue strength of plain concrete in compression. Mag Concrete Res 25(83):73–80

    Article  Google Scholar 

  42. Stefan MJ (1874) Versuche furdie scheinbare adhasion. In: Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wiens, Mathematisch Naturwissenschaftliche Klasse, pp. 713–735

  43. Takeda J, Tachikawa H (1971) Deformation and fracture of concrete subjected to dynamic load. In: the Int. Conference on Mech. Behavior of Materials, Concrete and Cement Paste, Glass and Ceramics, vol. 4. Kyoto, Japan, pp. 267–277

  44. Tedesco JW, Ross CA (1998) Strain-rate-dependent constitutive equations for concrete. J Press Vessel Technol-Trans ASME 120(4):398–405

    Article  Google Scholar 

  45. Toutlemonde F (1995) Impact resistance of concrete structures. Ph.D. thesis, Laboratory of Bridges and Roads (LCPC), Paris

  46. Wang W, Sluys L, deBorst R (1997) Viscoplasticity for instabilities due to strain softening and strain-rate softening. Int J Numer Methods Eng 40(20):3839–3864

    Article  MATH  Google Scholar 

  47. Wu JY, Li J, Faria R (2006) An energy release rate-based plastic-damage model for concrete. Int J Solids Struct 43(3–4):583–612. doi:10.1016/j.ijsolstr.2005.05.038

    Article  MATH  Google Scholar 

  48. Xu XP, Needleman A (1994) Numerical simulations of fast crack-growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

    Article  MATH  Google Scholar 

  49. Yan DM, Lin G (2006) Dynamic properties of concrete in direct tension. Cement Concrete Res 36(7):1371–1378. doi:10.1016/j.cemconres.2006.03.003

    Article  Google Scholar 

  50. Zeng SJ, Ren XD, Li J (2013) Hydrostatic behavior of concrete subjected to dynamic compression. J Struct Eng ASCE 139(9):1582–1592

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Science Foundation of China are gratefully appreciated (GNs: 51261120374, 91315301 and 51208374). We would also like to express our sincere appreciations the anonymous referee for many valuable suggestions and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Appendix: Derivations of Stefan effect

Appendix: Derivations of Stefan effect

In a viscous fluid, the stress \(\sigma _{ij}\) is often decomposed into the pressure \(p\) and the shear stress \(\tau _{ij}\) as follows

$$\begin{aligned} \sigma _{ij}=\tau _{ij}-p\delta _{ij} \end{aligned}$$
(95)

where \(\delta _{ij}\) is the Kronecker delta. The constitutive law for the incompressible Newtonian fluid reads

$$\begin{aligned} \tau _{ij}=\mu (v_{i,j}+v_{j,i}) \end{aligned}$$
(96)

where \(\mu \) is the viscosity and \(v_i\) is the velocity in the i-th direction. And the incompressibility reads

$$\begin{aligned} v_{k,k}=0 \end{aligned}$$
(97)

The equilibrium without body forces and inertia effects reads

$$\begin{aligned} \sigma _{ij,j}=0 \end{aligned}$$
(98)

Substituting Eq. (95) into Eq. (98) and using Eqs. (96) and (97), we have

$$\begin{aligned} \mu v_{i,jj}=p_{,i} \end{aligned}$$
(99)

Combining Eqs. (97) and (99) and expanding the tensor expressions into regular expressions, we have the following governing equation for the incompressible Newtonian inertia free flow.

$$\begin{aligned} {\left\{ \begin{array}{ll} \mu \left( \frac{\partial ^2v_1}{\partial x_1^2}+\frac{\partial ^2v_1}{\partial x_2^2}+\frac{\partial ^2v_1}{\partial x^2_3}\right) =\frac{\partial p}{\partial x_1} \\ \mu \left( \frac{\partial ^2v_2}{\partial x_1^2}+\frac{\partial ^2v_2}{\partial x_2^2}+\frac{\partial ^2v_2}{\partial x^2_3}\right) =\frac{\partial p}{\partial x_2} \\ \mu \left( \frac{\partial ^2v_3}{\partial x_1^2}+\frac{\partial ^2v_3}{\partial x_2^2}+\frac{\partial ^2v_3}{\partial x^2_3}\right) =\frac{\partial p}{\partial x_3} \\ \frac{\partial v_1}{\partial x_1}+\frac{\partial v_2}{\partial x_2}+\frac{\partial v_3}{\partial x_3}=0 \end{array}\right. } \end{aligned}$$
(100)

The model problem to solve the Stefan effect is shown in Fig. 16. Two parallel, circular plates with radius \(R\) that are separated by a Newtonian (incompressible) liquid with viscosity \(\mu \) and thickness \(h\). The next step is to obtain the expression of the force \(F_v\) applied on the plates by solving Eqs. (100) with the boundary conditions shown in Fig. 16.

Fig. 16
figure 16

Model problem of Stefan effect

As the model problem is axisymmetric, Eqs. (100) could be casted into the following form.

$$\begin{aligned} {\left\{ \begin{array}{ll} \mu \left( \frac{\partial ^2 v_r}{\partial r^2}+\frac{1}{r}\frac{\partial v_r}{\partial r}+\frac{\partial ^2 v_r}{\partial z^2}-\frac{v_r}{r^2} \right) =\frac{\partial p}{\partial r}\\ \mu \left( \frac{\partial ^2 v_z}{\partial r^2}+\frac{1}{r}\frac{\partial v_z}{\partial r}+\frac{\partial ^2 v_z}{\partial z^2} \right) =\frac{\partial p}{\partial z}\\ \frac{\partial v_r}{\partial r}+\frac{v_r}{r}+\frac{\partial v_z}{\partial z}=0 \end{array}\right. } \end{aligned}$$
(101)

[34] further assumes

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\partial ^2 v_1}{\partial x_1^2} \ll \frac{\partial ^2 v_1}{\partial x_3^2},~\frac{\partial ^2 v_1}{\partial x_2^2} \ll \frac{\partial ^2 v_1}{\partial x_3^2}\\ \frac{\partial ^2 v_2}{\partial x_1^2} \ll \frac{\partial ^2 v_1}{\partial x_3^2},~\frac{\partial ^2 v_2}{\partial x_2^2} \ll \frac{\partial ^2 v_1}{\partial x_3^2}\\ \frac{\partial v_3}{\partial x_3}=0,~\frac{\partial p}{\partial x_3}=0 \end{array}\right. } \end{aligned}$$
(102)

Subtstuting Eq. (102) into Eq. (101) yields

$$\begin{aligned} {\left\{ \begin{array}{ll} \mu \frac{\partial ^2 v_r}{\partial z^2}=\frac{d p}{d r}\\ \frac{\partial p}{\partial z}=0\\ \frac{\partial v_r}{\partial r}+\frac{v_r}{r}+\frac{d v_z}{d z}=0 \end{array}\right. } \end{aligned}$$
(103)

The first equation in Eqs. (103) suggests the solution of \(v_r\) in the following form

$$\begin{aligned} v_r=\frac{z(z-h)}{2\mu }\frac{d p}{d r} \end{aligned}$$
(104)

Substituting Eq. (104) into the third equation of Eqs. (103), we obtain

$$\begin{aligned} \frac{d v_z}{d z}=-\frac{z(z-h)}{2\mu }\left( \frac{d^2 p}{d r^2}+\frac{1}{r}\frac{d p}{d r}\right) \end{aligned}$$
(105)

An integration from \(0\) to \(h\) with respect to \(z\) gives

$$\begin{aligned} \frac{h^3}{12\mu }\left( \frac{d^2 p}{d r^2}+\frac{1}{r}\frac{d p}{d r}\right) =v_z|_{z=h}=\dot{h} \end{aligned}$$
(106)

The solution of Eq. (106) could be expressed as follows

$$\begin{aligned} p(r)=\frac{3\mu \dot{h}}{h^3}r^2+C_1\ln r+C_2 \end{aligned}$$
(107)

Considering the conditions that \(p(R)=p_0\) and \(p(0)\) is bounded, we further have

$$\begin{aligned} p(r)=p_0-\frac{3\mu \dot{h}}{h^3}(R^2-r^2) \end{aligned}$$
(108)

By integrating the additional pressure over the plate, we have the force induced by the viscosity

$$\begin{aligned} F_v=\int _0^R 2\pi r \big [p_0-p(r) \big ]dr=\frac{3\mu \pi R^4}{2h^3}\dot{h} \end{aligned}$$
(109)

Considering the following expressions of stress and strain

$$\begin{aligned} \sigma _v=\frac{F_v}{\pi R^2},~\dot{\epsilon }=\frac{\dot{h}}{h} \end{aligned}$$
(110)

Eq. (109) further reads

$$\begin{aligned} \sigma _v=A\dot{\epsilon },~A=\frac{\alpha _S\mu }{\gamma _h^2} \end{aligned}$$
(111)

where the shape coefficient \(\alpha _S=\frac{3}{2}\) and the aspect ratio \(\gamma _h=\frac{h}{R}\) for circular plates. Although derived considering the circular plate, Eqs. (111) offers the general form of viscous coefficients \(A\). And it is also observed that the aspect ratio \(\gamma _h\) plays a very important role for the rate-dependency between stress and strain rate besides the viscosity \(\mu \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Zeng, S. & Li, J. A rate-dependent stochastic damage–plasticity model for quasi-brittle materials. Comput Mech 55, 267–285 (2015). https://doi.org/10.1007/s00466-014-1100-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1100-7

Keywords

Navigation