Skip to main content
Log in

Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. The analysis is based on four different arterial models extracted form medical images, and the stent is placed across the neck of the aneurysm to reduce the flow circulation in the aneurysm. The core computational technique used in the analysis is the space–time (ST) version of the variational multiscale (VMS) method and is called “DSD/SST-VMST”. The special techniques developed for this class of cardiovascular fluid mechanics computations are used in conjunction with the DSD/SST-VMST technique. The special techniques include NURBS representation of the surface over which the stent model and mesh are built, mesh generation with a reasonable resolution across the width of the stent wire and with refined layers of mesh near the arterial and stent surfaces, modeling the double-stent case, and quantitative assessment of the flow circulation in the aneurysm. We provide a brief overview of the special techniques, compute the unsteady flow patterns in the aneurysm for the four arterial models, and investigate in each case how those patterns are influenced by the presence of single and double stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J A 70:1224–1231 (in Japanese)

    Google Scholar 

  2. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation. Comput Methods Appl Mech Eng 195: 1885–1895. doi:10.1016/j.cma.2005.05.050

    Article  MathSciNet  MATH  Google Scholar 

  3. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490. doi:10.1007/s00466-006-0065-6

    Article  MATH  Google Scholar 

  4. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322

    Article  MathSciNet  MATH  Google Scholar 

  5. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922. doi:10.1002/fld.1443

    Article  MathSciNet  MATH  Google Scholar 

  6. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168. doi:10.1016/j.compfluid.2005.07.014

    Article  MATH  Google Scholar 

  7. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009. doi:10.1002/fld.1497

    Article  MathSciNet  MATH  Google Scholar 

  8. Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54: 593–608. doi:10.1002/fld.1484

    Article  MathSciNet  MATH  Google Scholar 

  9. Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629. doi:10.1002/fld.1633

    Article  MathSciNet  MATH  Google Scholar 

  10. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159. doi:10.1007/s00466-008-0325-8

    Article  MATH  Google Scholar 

  11. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37

    Article  MathSciNet  MATH  Google Scholar 

  12. Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178

    Article  Google Scholar 

  13. Maynard JP, Nithiarasu P (2008) A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Commun Numer Methods Eng 24: 367– 417

    Article  Google Scholar 

  14. Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533. doi:10.1016/j.cma.2008.05.024

    Article  MathSciNet  MATH  Google Scholar 

  15. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621. doi:10.1016/j.cma.2008.08.020

    Article  MathSciNet  MATH  Google Scholar 

  16. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550

    Article  MathSciNet  MATH  Google Scholar 

  17. Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89

    Article  MathSciNet  MATH  Google Scholar 

  18. Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116. doi:10.1002/cnm.1241

    Article  MATH  Google Scholar 

  19. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29. doi:10.1007/s00466-009-0423-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41. doi:10.1007/s00466-009-0425-0

    Article  MathSciNet  MATH  Google Scholar 

  21. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347. doi:10.1002/cnm.1289

    Article  MathSciNet  MATH  Google Scholar 

  22. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52. doi:10.1007/s00466-009-0439-7

    Article  MATH  Google Scholar 

  23. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16

    Article  MathSciNet  MATH  Google Scholar 

  24. Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y (2010) Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow. Comput Mech 46: 147–157

    Article  MathSciNet  MATH  Google Scholar 

  25. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498

    Article  Google Scholar 

  26. Bazilevs Y, del Alamo JC, Humphrey JD (2010) From imaging to prediction: emerging non-invasive methods in pediatric cardiology. Prog Pediatr Cardiol 30: 81–89

    Article  Google Scholar 

  27. Mut F, Aubry R, Lohner R, Cebral JR (2010) Fast numerical solutions of patient-specific blood flows in 3D arterial systems. Int J Numer Methods Biomed Eng 26: 73–85

    Article  MATH  Google Scholar 

  28. Bevan RLT, Nithiarasu P, Loon RV, Sazanov I, Luckraz H, Garnham A (2010) Application of a locally conservative Galerkin (LCG) method for modelling blood flow through a patient-specific carotid bifurcation. Int J Numer Methods Fluids. doi:10.1002/fld.2313

    Google Scholar 

  29. Chitra K, Sundararajan T, Vengadesan S, Nithiarasu P (2010) Non-Newtonian blood flow study in a model cavopulmonary vascular system. Int J Numer Methods Fluids. doi:10.1002/fld.2256

    MATH  Google Scholar 

  30. Cebral JR, Mut F, Sforza D, Lohner R, Scrivano E, Lylyk P, Putnam C (2010) Clinical application of image-based cfd for cerebral aneurysms. Int J Numer Methods Biomed Eng. doi:10.1002/cnm.1373

    Google Scholar 

  31. Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323. doi:10.1002/fld.2360

    Article  MATH  Google Scholar 

  32. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65: 135–149. doi:10.1002/fld.2415

    Article  MathSciNet  MATH  Google Scholar 

  33. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Methods Fluids 65: 324–340. doi:10.1002/fld.2448

    Article  MATH  Google Scholar 

  34. Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27: 1665–1710. doi:10.1002/cnm.1433

    Article  MathSciNet  MATH  Google Scholar 

  35. Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47: 593–599

    Article  MathSciNet  Google Scholar 

  36. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48: 377–384. doi:10.1007/s00466-011-0619-0

    Article  MATH  Google Scholar 

  37. Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79: 010908. doi:10.1115/1.4005071

    Article  Google Scholar 

  38. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19: 171–225. doi:10.1007/s11831-012-9071-3

    Article  MathSciNet  Google Scholar 

  39. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech. doi:10.1007/s00466-012-0760-4

    MathSciNet  Google Scholar 

  40. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44. doi:10.1016/S0065-2156(08)70153-4

    Article  MathSciNet  MATH  Google Scholar 

  41. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351. doi:10.1016/0045-7825(92)90059-S

    Article  MathSciNet  MATH  Google Scholar 

  42. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371. doi:10.1016/0045-7825(92)90060-W

    Article  MathSciNet  MATH  Google Scholar 

  43. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575. doi:10.1002/fld.505

    Article  MathSciNet  MATH  Google Scholar 

  44. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900. doi:10.1002/fld.1430

    Article  MathSciNet  MATH  Google Scholar 

  45. Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48: 247–267. doi:10.1007/s00466-011-0571-z

    Article  MathSciNet  MATH  Google Scholar 

  46. Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22: 1230001. doi:10.1142/S0218202512300013

    Article  MathSciNet  Google Scholar 

  47. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349

    Article  MathSciNet  MATH  Google Scholar 

  48. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259

    Article  MathSciNet  MATH  Google Scholar 

  49. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242. doi:10.1016/0045-7825(92)90141-6

    Article  MATH  Google Scholar 

  50. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127: 387–401

    Article  MATH  Google Scholar 

  51. Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13: 1784–1799

    Article  Google Scholar 

  52. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201

    Article  MathSciNet  MATH  Google Scholar 

  53. Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229: 3402–3414

    Article  MathSciNet  MATH  Google Scholar 

  54. Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 333–344. doi:10.1007/s00466-011-0589-2

    Article  MATH  Google Scholar 

  55. Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 647–657. doi:10.1007/s00466-011-0614-5

    Article  MATH  Google Scholar 

  56. Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79: 010903. doi:10.1115/1.4005073

    Article  Google Scholar 

  57. Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech. doi:10.1007/s00466-012-0759-x

    Google Scholar 

  58. Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech. doi:10.1007/s00466-012-0758-y

    Google Scholar 

  59. Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307. doi:10.1002/fld.2359

    Article  MATH  Google Scholar 

  60. Tezduyar TE, Cragin T, Sathe S, Nanna B (2007) FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry. In: Onate E, Garcia J, Bergan P, Kvamsdal T (eds) Marine 2007. CIMNE, Barcelona

    Google Scholar 

  61. Tezduyar TE, Takizawa K, Christopher J (2009) Multiscale Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. In: Hartmann S, Meister A, Schaefer M, Turek S (eds.) International workshop on fluid–structure interaction—-theory, numerics and applications. Kassel University Press, Kassel, pp 231–252. ISBN 978-3-89958-666-4

  62. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  63. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Toward integration of CAD and FEA. Wiley, New York

    Book  Google Scholar 

  64. Rhee K, Han MH, Cha SH, Khang G (2001) The changes of flow characteristics caused by a stent in fusiform aneurysm models, Engineering in Medicine and Biology Society, 2001. Proc 23rd Annu Int Conf IEEE 1: 86–88. doi:10.1109/IEMBS.2001.1018852

    Google Scholar 

  65. Jou L-D, Mawad ME (2011) Hemodynamic effect of neuroform stent on intimal hyperplasia and thrombus formation in a carotid aneurysm. Med Eng Phys 33: 573–580. doi:10.1016/j.medengphy.2010.12.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayfun E. Tezduyar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takizawa, K., Schjodt, K., Puntel, A. et al. Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51, 1061–1073 (2013). https://doi.org/10.1007/s00466-012-0790-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0790-y

Keywords

Navigation