Skip to main content
Log in

A new multiscale computational method for elasto-plastic analysis of heterogeneous materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A new multiscale computational method is developed for the elasto-plastic analysis of heterogeneous continuum materials with both periodic and random microstructures. In the method, the multiscale base functions which can efficiently capture the small-scale features of elements are constructed numerically and employed to establish the relationship between the macroscopic and microscopic variables. Thus, the detailed microscopic stress fields within the elements can be obtained easily. For the construction of the numerical base functions, several different kinds of boundary conditions are introduced and their influences are investigated. In this context, a two-scale computational modeling with successive iteration scheme is proposed. The new method could be implemented conveniently and adopted to the general problems without scale separation and periodicity assumptions. Extensive numerical experiments are carried out and the results are compared with the direct FEM. It is shown that the method developed provides excellent precision of the nonlinear response for the heterogeneous materials. Moreover, the computational cost is reduced dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kanoute P, Boso DP, Chaboche JL, Schrefler BA (2009) Multiscale methods for composites: a review. Arch Comput Method Eng 16: 31–75

    Article  MATH  Google Scholar 

  2. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion and related field. Proc Royal Soc Lond Ser A 241: 376–396

    Article  MathSciNet  MATH  Google Scholar 

  3. Hashin Z, Strikman S (1963) A variational approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Solids 11: 127–140

    Article  MathSciNet  MATH  Google Scholar 

  4. Mori T, Tanaka K (1973) Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21: 571–574

    Article  Google Scholar 

  5. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13: 213–222

    Article  Google Scholar 

  6. Christensen RM, Lo KM (1979) Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids 27: 315–330

    Article  MATH  Google Scholar 

  7. Hori M, Nemat-Nasser S (1993) Double inclusion model and overall moduli of multiphase composites. Mech Mater 14: 189–206

    Article  Google Scholar 

  8. Dvorak G, Zhang J (2001) Transformation field analysis of damage evolution in composite materials. J Mech Phys Solids 49: 2517–2541

    Article  MATH  Google Scholar 

  9. Benssousan A, Lions JL, Papanicoulau G (1978) Asymptotic analysis for periodic structures. North Holland, Amsterdam

    Google Scholar 

  10. Suquet PM (1985) Local and global aspects in the mathematical theory of plasticity. In: Sawczuk A, Bianchi G (eds) Plasticity today: modelling, methods and applications. Elsevier, London, pp 279–310

    Google Scholar 

  11. Terada K, Kikuchi N (1995) Nonlinear homogenization method for practical applications. In: Ghosh S, Ostoja-Starzewski M (eds) Computational Methods in Micromechanics. AMSE AMD, vol 212, pp 1–16

  12. Fish J, Shek K, Pandheeradi M, Shephard M (1997) Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput Meth Appl Mech Eng 148: 53–73

    Article  MathSciNet  MATH  Google Scholar 

  13. Terada K, Hori M, Kyoya T, Kikuchi N (2000) Simulation of the multi-scale convergence in computational homogenization approaches. Int J Solids Struct 37: 2285–2311

    Article  MATH  Google Scholar 

  14. Ghosh S, LeeK Moorthy S (1996) Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Vornoi cell finite element model. Comput Meth Appl Mech Eng 132: 63–116

    Article  MATH  Google Scholar 

  15. Zhang HW, Wang H, Chen BS, Xie ZQ (2008) Analysis of Cosserat materials with Voronoi cell finite element method and parametric variational principle. Comput Meth Appl Mech Eng 197: 741–755

    Article  MathSciNet  MATH  Google Scholar 

  16. Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Meth Appl Mech Eng 190: 5427–5464

    Article  MathSciNet  MATH  Google Scholar 

  17. Matsui K, Terada K, Yuge K (2004) Two-scale finite element analysis of heterogeneous solids with periodic microstructures. Comput Struct 82: 593–606

    Article  Google Scholar 

  18. Feyel F, Chaboche JL (2000) FE 2 multiscale approach for modeling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Meth Appl Mech Eng 183: 309–330

    Article  MATH  Google Scholar 

  19. Lee K, Moorthy S, Ghosh S (1999) Multiple scale computational model for damage in composite materials. Comput Meth Appl Mech Eng 172: 175–201

    Article  MATH  Google Scholar 

  20. Fish J, Yu O, Shek K (1999) Computational damage mechanics for composite materials based on mathematical homogenization. Int J Numer Methods Eng 45: 1657–1679

    Article  MATH  Google Scholar 

  21. Fish J, Nagai G (2002) Nonlocal dispersive model for wave propagation in heterogeneous media. Part 1: One dimensional case . Int J Numer Methods Eng 54: 331– 346

    Article  MathSciNet  MATH  Google Scholar 

  22. Fish J, Nagai G (2002) Nonlocal dispersive model for wave propagation in heterogeneous media. Part 2: Multi-dimensional case. Int J Numer Methods Eng 54: 347–363

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang HW, Zhang S, Bi JY, Schrefler BA (2007) Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach. Int J Numer Methods Eng 69: 87–113

    Article  MathSciNet  MATH  Google Scholar 

  24. Ibrahimbegovic A, Markovic D (2003) Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures. Comput Methods Appl Mech Eng 192: 3089–3107

    Article  MATH  Google Scholar 

  25. Ghosh S, Lee k, Raghavan (2001) A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solids Struct 38: 2335–2385

    Article  MATH  Google Scholar 

  26. Brasile S, Casciaro R, Formica G (2007) Multilevel approach for brick masonry walls-part I: a numerical strategy for the nonlinear analysis. Comput Methods Appl Mech Eng 196: 4934–4951

    Article  MathSciNet  MATH  Google Scholar 

  27. Babuska I, Osborn E (1983) Generalized finite element methods: Their performance and their relation to mixed methods. SIAM J Numer Anal 20: 510–536

    Article  MathSciNet  MATH  Google Scholar 

  28. Babuska I, Caloz G, Osborn E (1994) Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J Numer Anal 31: 945–981

    Article  MathSciNet  MATH  Google Scholar 

  29. Hou TY, Wu XH (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134: 169–189

    Article  MathSciNet  MATH  Google Scholar 

  30. Hou TY, Wu XH, Cai ZQ (1999) Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math Comput 68: 913–943

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen ZM, Hou TY (2003) A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math Comput 72: 541–576

    MathSciNet  MATH  Google Scholar 

  32. Efendiev Y, Ginting V, Hou TY, Ewing R (2006) Accurate multiscale finite element methods for two-phase flow simulations. J Comput Phys 220: 155–174

    Article  MathSciNet  MATH  Google Scholar 

  33. Aarnes JE (2004) On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model Sim 2: 421–439

    Article  MathSciNet  MATH  Google Scholar 

  34. Aarnes JE, Krogstad S, Lie KA (2006) A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids. Multiscale Model Sim 5: 337–363

    Article  MathSciNet  MATH  Google Scholar 

  35. Efendiev Y, Hou TY, Ginting V (2004) Multiscale finite element methods for nonlinear problems and their applications. Commun Math Sci 2: 553–589

    MathSciNet  MATH  Google Scholar 

  36. Jenny P, Lee SH, Tchelepi HA (2003) Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J Comput Phys 187: 47–67

    Article  MATH  Google Scholar 

  37. He X, Ren L (2005) Finite volume multiscale finite element method for solving the groundwater flow problems in heterogeneous porous media. Water Resour Res 41:W10417. doi:10.1029/2004WR003934

  38. Zhang HW, Wu JK, Fu ZD (2010) Extended multiscale finite element method for mechanical analysis of periodic lattice truss materials. Int J Multiscale Comput 8: 597–613

    Google Scholar 

  39. Zhang HW, Wu JK, Fu ZD (2010) Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials. Comput Mech 45: 623–635

    Article  MATH  Google Scholar 

  40. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. John Wiley & Sons Ltd, San Francisco

    MATH  Google Scholar 

  41. Simo JC, Hughes TJR (1998) Computational Inelasticity. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H.W., Wu, J.K. & Lv, J. A new multiscale computational method for elasto-plastic analysis of heterogeneous materials. Comput Mech 49, 149–169 (2012). https://doi.org/10.1007/s00466-011-0634-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0634-1

Keywords

Navigation