Skip to main content

Advertisement

Log in

Improved production of RNA-inhibiting antimicrobial peptide by Bacillus licheniformis MCC 2514 facilitated by a genetic algorithm optimized medium

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

One of the significant challenges during the purification and characterization of antimicrobial peptides (AMPs) from Bacillus sp. is the interference of unutilized peptides from complex medium components during analytical procedures. In this study, a semi-synthetic medium was devised to overcome this challenge. Using a genetic algorithm, the production medium of AMP is optimized. The parent organism, Bacillus licheniformis MCC2514, produces AMP in very small quantities. This AMP is known to inhibit RNA biosynthesis. The findings revealed that lactose, NH4Cl and NaNO3 were crucial medium constituents for enhanced AMP synthesis. The potency of the AMP produced was studied using bacterium, Kocuria rhizophila ATCC 9341. The AMP produced from the optimized medium was eightfold higher than that produced from the unoptimized medium. Furthermore, activity was increased by 1.5-fold when cultivation conditions were standardized using the optimized medium. Later, AMP was produced in a 5 L bioreactor under controlled conditions, which led to similar results as those of shake-flask production. The mode of action of optimally produced AMP was confirmed to be inhibition of RNA biosynthesis. Here, we demonstrate that improved production of AMP is possible with the developed semi-synthetic medium recipe and could help further AMP production in an industrial setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Kruszewska D, Sahl HG, Bierbaum G et al (2004) Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother 54:648–653. https://doi.org/10.1093/jac/dkh387

    Article  CAS  PubMed  Google Scholar 

  2. Nithya V, Halami PM (2012) Antibacterial peptides, probiotic properties and biopreservative efficacy of native Bacillus species isolated from different food sources. Probiotics Antimicrob Proteins 4:279–290. https://doi.org/10.1007/s12602-012-9115-x

    Article  CAS  PubMed  Google Scholar 

  3. Urban A, Eckermann S, Fast B et al (2007) Novel whole-cell antibiotic biosensors for compound discovery. Appl Environ Microbiol 73:6436–6443. https://doi.org/10.1128/AEM.00586-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rohith HS, Halami PM (2021) In vitro validation studies for adhesion factor and adhesion efficiency of probiotic Bacillus licheniformis MCC 2514 and Bifidobacterium breve NCIM 5671 on HT-29 cell lines. Arch Microbiol 203:2989–2998. https://doi.org/10.1007/s00203-021-02257-y

    Article  CAS  PubMed  Google Scholar 

  5. Nithya V, Halami PM (2012) Novel whole-cell reporter assay for stress-based classification of antibacterial compounds produced by locally isolated Bacillus spp. Indian J Microbiol 52:180–184. https://doi.org/10.1007/s12088-012-0256-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hutter B, Fischer C, Jacobi A et al (2004) Panel of Bacillus subtilis reporter strains indicative of various modes of action. Antimicrob Agents Chemother 48:2588–2594. https://doi.org/10.1128/AAC.48.7.2588-2594.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cladera-Olivera F, Caron GR, Brandelli A (2004) Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochem Eng J 21:53–58. https://doi.org/10.1016/j.bej.2004.05.002

    Article  CAS  Google Scholar 

  8. Motta AS, Brandelli A (2008) Evaluation of environmental conditions for production of bacteriocin-like substance by Bacillus sp. strain P34. World J Microbiol Biotechnol 24:641–646. https://doi.org/10.1007/s11274-007-9520-6

    Article  CAS  Google Scholar 

  9. Horak I, Jansen van Rensburg PJ, Claassens S (2021) Effect of cultivation media and temperature on metabolite profiles of three nematicidal Bacillus species. Nematology 24(4):383–399. https://doi.org/10.1163/15685411-bja10137

    Article  Google Scholar 

  10. Bizani D, Brandelli A (2004) Influence of media and temperature on bacteriocin production by Bacillus cereus 8A during batch cultivation. Appl Microbiol Biotechnol 65:158–162. https://doi.org/10.1007/s00253-004-1570-1

    Article  CAS  PubMed  Google Scholar 

  11. Deraz SF, Karlsson EN, Hedström M et al (2005) Purification and characterisation of acidocin D20079, a bacteriocin produced by Lactobacillus acidophilus DSM 20079. J Biotechnol 117:343–354. https://doi.org/10.1016/j.jbiotec.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  12. Saidumohamed BE, Baburaj AP, Johny TK et al (2021) A magainin-2 like bacteriocin BpSl14 with anticancer action from fish gut Bacillus safensis SDG14. Anal Biochem 627:114261. https://doi.org/10.1016/j.ab.2021.114261

    Article  CAS  PubMed  Google Scholar 

  13. Sarma MVRK, Sahai V, Bisaria VS (2009) Genetic algorithm-based medium optimization for enhanced production of fluorescent pseudomonad R81 and siderophore. Biochem Eng J 47:100–108. https://doi.org/10.1016/j.bej.2009.07.010

    Article  CAS  Google Scholar 

  14. Weuster-Botz D, Wandrey C (1995) Medium optimization by genetic algorithm for continuous production of formate dehydrogenase A continuous production process for formate dehydrogenase (FDH) production. Process Biochem 30:563–571. https://doi.org/10.1016/0032-9592(94)00036-0

    Article  CAS  Google Scholar 

  15. Kolakoti A, Jha P, Mosa PR et al (2020) Optimization and modelling of mahua oil biodiesel using RSM and genetic algorithm techniques. Math Models Eng 6:134–146. https://doi.org/10.21595/mme.2020.21357

  16. Desai KM, Survase SA, Saudagar PS et al (2008) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem Eng J 41:266–273. https://doi.org/10.1016/j.bej.2008.05.009

    Article  CAS  Google Scholar 

  17. Upendra RS, Khandelwal P, Ahmed MR (2021) Bacteriocin production optimization applying RSM and hybrid (ANN-GA) method for the indigenous culture of Pediococcus pentosaceus Sanna 14. J Appl Pharm Sci 11:050–060. https://doi.org/10.7324/JAPS.2021.1101008

    Article  CAS  Google Scholar 

  18. Guo W, Zhang Y, Lu J et al (2010) Optimization of fermentation medium for nisin production from Lactococcus lactis subsp. lactis using response surface methodology (RSM) combined with artificial neural network-genetic algorithm (ANN-GA). Afr J Biotechnol 9:6264–6272

    CAS  Google Scholar 

  19. Bapat PM, Wangikar PP (2004) Optimization of Rifamycin B fermentation in shake flasks via a machine-learning-based approach. Biotechnol Bioeng 86:201–208. https://doi.org/10.1002/bit.20056

    Article  CAS  PubMed  Google Scholar 

  20. Singh V, Khan M, Khan S, Tripathi CKM (2009) Optimization of actinomycin v production by Streptomyces triostinicus using artificial neural network and genetic algorithm. Appl Microbiol Biotechnol 82:379–385. https://doi.org/10.1007/s00253-008-1828-0

    Article  CAS  PubMed  Google Scholar 

  21. Shobharani P, Padmaja RJ, Halami PM (2015) Diversity in the antibacterial potential of probiotic cultures Bacillus licheniformis MCC2514 and Bacillus licheniformis MCC2512. Res Microbiol 166:546–554. https://doi.org/10.1016/j.resmic.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  22. Barefoot SF, Klaenhammer TR (1983) Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl Environ Microbiol 45:1808–1815. https://doi.org/10.1128/aem.45.6.1808-1815.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Motta AS, Brandelli A (2002) Characterization of an antibacterial peptide produced by Brevibacterium linens. J Appl Microbiol 92:63–70. https://doi.org/10.1046/j.1365-2672.2002.01490.x

    Article  CAS  PubMed  Google Scholar 

  24. Vadakedath N, Halami PM (2019) Characterization and mode of action of a potent bio-preservative from food-grade Bacillus licheniformis MCC 2016. Prep Biochem Biotechnol 49:334–343. https://doi.org/10.1080/10826068.2019.1566141

    Article  CAS  PubMed  Google Scholar 

  25. Anthony T, Rajesh T, Kayalvizhi N, Gunasekaran P (2009) Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Bioresour Technol 100:872–877. https://doi.org/10.1016/j.biortech.2008.07.027

    Article  CAS  PubMed  Google Scholar 

  26. Goldberg DE (1953) Goldberg genetic algorithms in search. Addison-Wesley, Boston

    Google Scholar 

  27. Haupt RL, Haupt SE (2004) Practical genetic algorithms. Wiley, Hoboken

    Google Scholar 

  28. Burkard M, Stein T (2008) Microtiter plate bioassay to monitor the interference of antibiotics with the lipid II cycle essential for peptidoglycan biosynthesis. J Microbiol Methods 75:70–74. https://doi.org/10.1016/J.MIMET.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  29. Honda H, Yajima N, Saito T (2012) Characterization of lactose utilization and β-galactosidase in Lactobacillus brevis KB290, the hetero-fermentative lactic acid bacterium. Curr Microbiol 65:679–685. https://doi.org/10.1007/s00284-012-0216-2

    Article  CAS  PubMed  Google Scholar 

  30. De Leersnyder I, De Gelder L, Van Driessche I, Vermeir P (2018) Influence of growth media components on the antibacterial effect of silver ions on Bacillus subtilis in a liquid growth medium. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-27540-9

    Article  CAS  Google Scholar 

  31. Vessoni Penna TC, Faustino Jozala A, De LencastreNovaes LC et al (2005) Production of nisin by Lactococcus lactis in media with skimmed milk. Appl Biochem Biotechnol Part A Enzyme Eng Biotechnol 122:619–637. https://doi.org/10.1385/abab:122:1-3:0619

    Article  Google Scholar 

  32. Iyapparaj P, Maruthiah T, Ramasubburayan R et al (2013) Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens. Aquat Biosyst 9:1–10. https://doi.org/10.1186/2046-9063-9-12

    Article  CAS  Google Scholar 

  33. Guerra NP, Pastrana L (2001) Enhanced nisin and pediocin production on whey supplemented with different nitrogen sources. Biotechnol Lett 23:609–612. https://doi.org/10.1023/A:1010324910806

    Article  CAS  Google Scholar 

  34. Balciunas EM, Al Arni S, Converti A et al (2016) Production of bacteriocin-like inhibitory substances (BLIS) by Bifidobacterium lactis using whey as a substrate. Int J Dairy Technol 69:236–242. https://doi.org/10.1111/1471-0307.12247

    Article  CAS  Google Scholar 

  35. Norris JR, Ribbons DW (1970) Methods in microbiology, 1st edn. Academic, London

  36. Souza Vera EC, de Azevedo POdS, Domínguez JM, Oliveira RPdS (2018) Optimization of biosurfactant and bacteriocin-like inhibitory substance (BLIS) production by Lactococcus lactis CECT-4434 from agroindustrial waste. Biochem Eng J 133:168–178. https://doi.org/10.1016/j.bej.2018.02.011

    Article  CAS  Google Scholar 

  37. Roeßler M, Sewald X, Müller V (2003) Chloride dependence of growth in bacteria. FEMS Microbiol Lett 225:161–165. https://doi.org/10.1016/S0378-1097(03)00509-3

    Article  CAS  PubMed  Google Scholar 

  38. Faghfuri E, Fooladi J, Sepehr S, Moosavi-Nejad SZ (2013) L- tryptophan production by whole cells of Escherichia coli based on Iranian sugar beet molasses. Jundishapur J Microbiol 6:1–5. https://doi.org/10.5812/jjm.5370

    Article  Google Scholar 

  39. Ibrahim HM, Yusoff WMW, Hamid AA et al (2005) Optimization of medium for the production of β-cyclodextrin glucanotransferase using Central Composite Design (CCD). Process Biochem 40:753–758. https://doi.org/10.1016/j.procbio.2004.01.042

    Article  CAS  Google Scholar 

  40. Wadekar BP, Dharmadhukari SM (2021) Optimization of medium for enhancing bacteriocin production by marine Lactobacillus rhamnosus L43 using statistical design. Int J Res Biosci Agric Technol 2:1–10

    Google Scholar 

  41. Gupta MK, Shrivastava A, Patel M et al (2013) Optimization of growth parameters for enhanced production of antibacterial compounds by environmentally isolated Bacillus strains. Int J Environ Sci 2:11–18

    CAS  Google Scholar 

  42. Tabbene O, Ben SI, Djebali K et al (2009) Optimization of medium composition for the production of antimicrobial activity by Bacillus subtilis B38. Biotechnol Prog 25:1267–1274. https://doi.org/10.1002/btpr.202

    Article  CAS  PubMed  Google Scholar 

  43. Gulhane PA, Gomashe AV, Lade S (2014) Optimization of bacitracin production from Bacillus licheniformis NCIM 2536. Int J Curr Microbiol Appl Sci 3:819–829

    Google Scholar 

  44. Kayalvizhi N, Gunasekaran P (2008) Production and characterization of a low-molecular-weight bacteriocin from Bacillus licheniformis MKU3. Lett Appl Microbiol 47:600–607. https://doi.org/10.1111/j.1472-765X.2008.02473.x

    Article  CAS  PubMed  Google Scholar 

  45. Wu C, Biswas S, Garcia De Gonzalo CV, Van Der Donk WA (2019) Investigations into the mechanism of action of sublancin. ACS Infect Dis 5:454–459. https://doi.org/10.1021/acsinfecdis.8b00320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mukhopadhyay J, Sineva E, Knight J et al (2004) Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel mechanism for inhibition of a nucleotide polymerase and an attractive target for antibacterial drug discovery. Mol Cell 14:739–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137. https://doi.org/10.1146/annurev.micro.56.012302.161024

    Article  CAS  PubMed  Google Scholar 

  48. Lajis AFB (2020) Biomanufacturing process for the production of bacteriocins from Bacillaceae family. Bioresour Bioprocess 7. https://doi.org/10.1186/s40643-020-0295-z

  49. Fickers P, Leclère V, Guez JS et al (2008) Temperature dependence of mycosubtilin homologue production in Bacillus subtilis ATCC6633. Res Microbiol 159:449–457. https://doi.org/10.1016/j.resmic.2008.05.004

    Article  CAS  PubMed  Google Scholar 

  50. Jawan R, Abbasiliasi S, Tan JS et al (2020) Influence of culture conditions and medium compositions on the production of bacteriocin-like inhibitory substances by Lactococcus lactis GH1. Microorganisms 8:1–14. https://doi.org/10.3390/microorganisms8101454

    Article  CAS  Google Scholar 

  51. Modiri S, Kermanshahi RK, Soudi MR et al (2021) Growth optimization of Lactobacillus acidophilus for production of antimicrobial peptide acidocin 4356: scale up from flask to lab-scale fermenter. Iran J Biotechnol 19:10–19. https://doi.org/10.30498/ijb.2021.218725.2686

  52. Arias AA, Ongena M, Devreese B et al (2013) Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PLoS ONE 8:1–10. https://doi.org/10.1371/journal.pone.0083037

    Article  CAS  Google Scholar 

  53. de Azevedo POdS, Converti A, Gierus M, Oliveira RPdS (2019) Antimicrobial activity of bacteriocin-like inhibitory substance produced by Pediococcus pentosaceus: from shake flasks to bioreactor. Mol Biol Rep 46:461–469. https://doi.org/10.1007/s11033-018-4495-y

    Article  CAS  PubMed  Google Scholar 

  54. Yildirim S, Konrad D, Calvez S et al (2007) Production of recombinant bacteriocin divercin V41 by high cell density Escherichia coli batch and fed-batch cultures. Appl Microbiol Biotechnol 77:525–531. https://doi.org/10.1007/s00253-007-1188-1

    Article  CAS  PubMed  Google Scholar 

  55. KhaliliSamani M, Noormohammadi Z, Fazeli MR, Samadi N (2021) Bacteriocin activity of various iranian honey-associated bacteria and development of a simple medium for enhanced bacteriocin activity. J Environ Health Sci Eng 19:427–435. https://doi.org/10.1007/s40201-021-00615-y

    Article  CAS  Google Scholar 

  56. Mitra S, Chakrabartty PK, Biswas SR (2007) Production of nisin Z by Lactococcus lactis isolated from Dahi. Appl Biochem Biotechnol 143:41–53. https://doi.org/10.1007/s12010-007-0032-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Director, CSIR- Central Food Technological Research Institute, for encouraging and providing the facility. The authors acknowledge the Department of Science and Technology, New Delhi, for funding the project (sanction no. EEQ/2016/000310) under which the work was carried out. IJP acknowledges ICMR, New Delhi for the grant of SRF (2019-6295) for financial support. The authors are thankful to Mr. Punil Kumar and Mr. Mukund for their technical support in carrying out the work.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

IJP: conceptualization, methodology, investigation, writing—original draft. SM: software, methodology, validation, writing—review and editing. PMH: resources, validation, supervision and final approval of manuscript.

Corresponding author

Correspondence to Prakash M. Halami.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3416 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peerzade, I.J., Mutturi, S. & Halami, P.M. Improved production of RNA-inhibiting antimicrobial peptide by Bacillus licheniformis MCC 2514 facilitated by a genetic algorithm optimized medium. Bioprocess Biosyst Eng (2024). https://doi.org/10.1007/s00449-024-02998-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-024-02998-2

Keywords

Navigation