Skip to main content

Current Trends and Prospects in Antimicrobial Peptide Bioprocessing

  • Chapter
  • First Online:
Microbial Production of High-Value Products

Abstract

The increase in resistance to conventional antimicrobials in recent years has boosted the search for new antibiotics to treat serious infectious diseases, especially those generated by multi-resistant bacteria. In this context, antimicrobial peptides (AMPs) are alternative molecules for use as new therapeutic agents. AMPs are small bioactive proteins commonly produced by all living organisms, and they can be part of innate immunity. Due to their broad-spectrum antibacterial potential and other activities, including immunomodulatory and antitumor, they are of great interest to the pharmaceutical industry’s production of biopharmaceuticals. Among the technological platforms applied in the process of development and manufacturing of AMPs, recombinant DNA technology has enabled the production of such molecules using bacterial and yeast cells as expression host systems on a laboratory scale and in large-scale environments. Furthermore, different bioprocessing strategies can be used for peptide industrial production, aiming to optimize the yield, make cultures more robust and significantly increase cell density. In this chapter, we will address recent developments and future directions in AMPs bioprocessing, including microbial expression systems, as well as bioprocessing and purification technologies. Here we also describe successful cases in this field and emphasize the prospects and challenges related to AMPs bioengineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Plattner S, Shah KH, Bohlmann H (2013) Comparison of periplasmic and intracellular expression of Arabidopsis thionin proproteins in E. coli. Biotechnol Lett 35:1085–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agbale CM, Sarfo JK, Galyuon IK et al (2019) Antimicrobial and antibiofilm activities of helical antimicrobial peptide sequences incorporating metal-binding motifs. Biochemistry 58:3802–3812

    Article  CAS  PubMed  Google Scholar 

  • Agyei D, Ahmed I, Akram Z et al (2017) Protein and peptide biopharmaceuticals: an overview. Protein Pept Lett 24:94–101

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad I, Nawaz N, Darwesh NM et al (2018) Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expr Purif 144:12–18

    Article  CAS  PubMed  Google Scholar 

  • Ahmad B, Hanif Q, Xubiao W et al (2019) Expression and purification of hybrid ll-37tα1 peptide in Pichia pastoris and evaluation of its immunomodulatory and anti-inflammatory activities by LPS neutralization. Front Immunol 10:1–12

    Article  CAS  Google Scholar 

  • Almaaytah A, Qaoud MT, Abualhaijaa A et al (2018) Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides. Infect Drug Resist 11:835–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida LHO, de Oliveira CFR, Rodrigues MS et al (2020) Adepamycin: design, synthesis and biological properties of a new peptide with antimicrobial properties. Arch Biochem Biophys 691:108487

    Article  CAS  PubMed  Google Scholar 

  • Andersson DI, Hughes D, Kubicek-Sutherland JZ (2016) Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 26:43–57

    Article  CAS  PubMed  Google Scholar 

  • Arbulu S, Jiménez JJ, Gútiez L et al (2019) Cloning and expression of synthetic genes encoding native, hybrid- and bacteriocin-derived chimeras from mature class IIa bacteriocins, by Pichia pastoris (syn. Komagataella spp.). Food Res Int 121:888–899

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Saxena V, Ayyar BV (2017) Affinity chromatography: a versatile technique for antibody purification. Methods 116:84–94

    Article  CAS  PubMed  Google Scholar 

  • Ashcheulova DO, Efimova LV, Lushchyk AY et al (2018) Production of the recombinant antimicrobial peptide UBI 18-35 in Escherichia coli. Protein Expr Purif 143:38–44

    Article  CAS  PubMed  Google Scholar 

  • Assis LM, Nedeljković M, Dessen A (2017) New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat 31:1–14

    Article  PubMed  Google Scholar 

  • Azari M, Asad S, Mehrnia MR (2020) Heterologous production of porcine derived antimicrobial peptide PR-39 in Escherichia coli using SUMO and intein fusion systems. Protein Expr Purif 169:105568

    Article  CAS  PubMed  Google Scholar 

  • Basanta A, Gómez-Sala B, Sánchez J et al (2010) Use of the yeast Pichia pastoris as an expression host for secretion of enterocin L50, a leaderless two-peptide (L50A and L50B) bacteriocin from Enterococcus faecium L50▽. Appl Environ Microbiol 76:3314–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu L, Tolkatchev D, Jetté JF et al (2007) Production of active pediocin PA-1 in Escherichia coli using a thioredoxin gene fusion expression approach: cloning, expression, purification, and characterization. Can J Microbiol 53:1246–1258

    Article  CAS  PubMed  Google Scholar 

  • Belguesmia Y, Bendjeddou K, Kempf I et al (2020) Heterologous biosynthesis of five new class II bacteriocins from Lactobacillus paracasei CNCM I-5369 with antagonistic activity against pathogenic Escherichia coli strains. Front Microbiol 11:1–9

    Article  Google Scholar 

  • Bhambure R, Kumar K, Rathore AS (2011) High-throughput process development for biopharmaceutical drug substances. Trends Biotechnol 29:127–135. https://doi.org/10.1016/j.tibtech.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  • Bhopale GM (2020) Antimicrobial peptides: a promising avenue for human healthcare. Curr Pharm Biotechnol 21:90–96

    Article  CAS  PubMed  Google Scholar 

  • Blunt W, Levin DB, Cicek N (2018) Bioreactor operating strategies for improved polyhydroxyalkanoate (PHA) productivity. Polymers (Basel) 10:1197

    Article  CAS  Google Scholar 

  • Bommarius B, Jenssen H, Elliott M et al (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31:1957–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boparai JK, Sharma PK (2019) Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 27:4–16

    Article  CAS  Google Scholar 

  • Boto A, Pérez de la Lastra J, González C (2018) The road from host-defense peptides to a new generation of antimicrobial drugs. Molecules 23:311

    Article  CAS  PubMed Central  Google Scholar 

  • Briand L, Marcion G, Kriznik A et al (2016) A self-inducible heterologous protein expression system in Escherichia coli. Sci Rep 6:33037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne K, Chakraborty S, Chen R et al (2020) A new era of antibiotics: the clinical potential of antimicrobial peptides. Int J Mol Sci 21:7047

    Article  CAS  PubMed Central  Google Scholar 

  • Butt TR, Edavettal SC, Hall JP, Mattern MR (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif 43:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso P, Glossop H, Meikle TG et al (2021) Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev 13:35–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carta G, Jungbauer A (2010) Protein chromatography. Wiley, Chichester

    Book  Google Scholar 

  • Chen CH, Lu TK (2020) Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 9:24

    Article  CAS  PubMed Central  Google Scholar 

  • Cheng KT, Wu CL, Yip BS et al (2018) High level expression and purification of the clinically active antimicrobial peptide P-113 in Escherichia coli. Molecules 23:800

    Article  CAS  PubMed Central  Google Scholar 

  • Chu C, Zhang W, Li J et al (2018) A single codon optimization enhances recombinant human TNF-α vaccine expression in Escherichia coli. Biomed Res Int 2018:1–8

    Article  CAS  Google Scholar 

  • Chung BKS, Lee DY (2012) Computational codon optimization of synthetic gene for protein expression. BMC Syst Biol 6:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke KG (2013) Downstream processing. In: Bioprocess engineering. Elsevier, Amsterdam, pp 209–234

    Chapter  Google Scholar 

  • Corrales-García LL, Serrano-Carreón L, Corzo G (2020) Improving the heterologous expression of human β-defensin 2 (HBD2) using an experimental design. Protein Expr Purif 167:105539

    Article  PubMed  CAS  Google Scholar 

  • Costa Ramos LF, Rangel J, Andrade G et al (2021) Identification and recombinant expression of an antimicrobial peptide (cecropin B-like) from soybean pest Anticarsia gemmatalis. J Venom Anim Toxins Incl Trop Dis 27:1–12

    Google Scholar 

  • Costa S, Almeida A, Castro A, Domingues L (2014) Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 5:1–20

    Article  CAS  Google Scholar 

  • Cui W, Han L, Suo F et al (2018) Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 34:145

    Article  PubMed  CAS  Google Scholar 

  • D’Anjou MC, Daugulis AJ (2000) Mixed-feed exponential feeding for fed-batch culture of recombinant methylotrophic yeast. Biotechnol Lett 22:341–346

    Article  Google Scholar 

  • da Costa JP, Cova M, Ferreira R, Vitorino R (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99:2023–2040

    Article  PubMed  CAS  Google Scholar 

  • Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  CAS  PubMed  Google Scholar 

  • Dauer K, Pfeiffer-Marek S, Kamm W, Wagner KG (2021) Microwell plate-based dynamic light scattering as a high-throughput characterization tool in biopharmaceutical development. Pharmaceutics 13:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira KBS, Leite ML, Rodrigues GR et al (2020) Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 13:367–390

    Article  CAS  Google Scholar 

  • de Paiva DP, Rocha TB, Rubini MR et al (2018) A study on the use of strain-specific and homologous promoters for heterologous expression in industrial Saccharomyces cerevisiae strains. AMB Express 8:82

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deng T, Ge H, He H et al (2017) The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr Purif 140:52–59

    Article  CAS  PubMed  Google Scholar 

  • Diers IV, Rasmussen E, Larsen PH, Kjaersig I (1991) Yeast fermentation processes for insulin production. Bioprocess Technol 13:166–176

    CAS  PubMed  Google Scholar 

  • Dijksteel GS, Ulrich MMW, Middelkoop E, Boekema BKHL (2021) Review: lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol 12:616979

    Article  PubMed  PubMed Central  Google Scholar 

  • Drayton M, Kizhakkedathu JN, Straus SK (2020) Towards robust delivery of antimicrobial peptides to combat bacterial resistance. Molecules 25:3048

    Article  CAS  PubMed Central  Google Scholar 

  • Ehgartner D, Sagmeister P, Langemann T et al (2017) A novel method to recover inclusion body protein from recombinant E. coli fed-batch processes based on phage ΦX174-derived lysis protein E. Appl Microbiol Biotechnol 101:5603–5614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng X, Xu W, Qu P et al (2015) High-yield recombinant expression of the chicken antimicrobial peptide fowlicidin-2 in Escherichia coli. Biotechnol Prog 31:369–374

    Article  CAS  PubMed  Google Scholar 

  • Fensterseifer ICM, Felício MR, Alves ESF et al (2019) Selective antibacterial activity of the cationic peptide PaDBS1R6 against Gram-negative bacteria. Biochim Biophys Acta Biomembr 1861:1375–1387

    Article  CAS  PubMed  Google Scholar 

  • Fida HM, Kumada Y, Terashima M et al (2009) Tandem multimer expression of angiotensin I-converting enzyme inhibitory peptide in Escherichia coli. Biotechnol J 4:1345–1356

    Article  CAS  PubMed  Google Scholar 

  • Franco OL (2011) Peptide promiscuity: an evolutionary concept for plant defense. FEBS Lett 585:995–1000

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Liang Y, Zhong X et al (2020) Codon optimization with deep learning to enhance protein expression. Sci Rep 10:17617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Ortega X, Cámara E, Ferrer P et al (2019) Rational development of bioprocess engineering strategies for recombinant protein production in Pichia pastoris (Komagataella phaffii) using the methanol-free GAP promoter. Where do we stand? New Biotechnol 53:24–34

    Article  CAS  Google Scholar 

  • Ge Y, MacDonald DL, Holroyd KJ et al (1999) In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother 43:782–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes AR, Byregowda SM, Veeregowda BM, Balamurugan V (2016) An overview of heterologous expression host systems for the production of recombinant proteins. Adv Anim Vet Sci 4:346–356

    Article  Google Scholar 

  • Gronemeyer P, Ditz R, Strube J (2014) Trends in upstream and downstream process development for antibody manufacturing. Bioengineering 1:188–212

    Article  PubMed  Google Scholar 

  • Gupta SK, Shukla P (2017) Sophisticated cloning, fermentation, and purification technologies for an enhanced therapeutic protein production: a review. Front Pharmacol 8:1–17

    Article  CAS  Google Scholar 

  • Haney EF, Mansour SC, Hancock REW (2017) Antimicrobial peptides. Springer, New York

    Google Scholar 

  • Hanson G, Coller J (2018) Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol 19:20–30

    Article  CAS  PubMed  Google Scholar 

  • He Q, Fu A, Li T (2015) Expression and one-step purification of the antimicrobial peptide cathelicidin-BF using the intein system in Bacillus subtilis. J Ind Microbiol Biotechnol 42:647–653

    Article  CAS  PubMed  Google Scholar 

  • Hebbi V, Kumar D, Rathore AS (2020) Process analytical technology implementation for peptide manufacturing: cleavage reaction of recombinant lethal toxin neutralizing factor concatemer as a case study. Anal Chem 92:5676–5681

    Article  CAS  PubMed  Google Scholar 

  • Jiang R, Zhang P, Wu X et al (2021) Expression of antimicrobial peptide Cecropin P1 in Saccharomyces cerevisiae and its antibacterial and antiviral activity in vitro. Electron J Biotechnol 50:16–22

    Article  CAS  Google Scholar 

  • Jin F, Xu X, Wang L et al (2006) Expression of recombinant hybrid peptide cecropinA(1–8)–magainin2(1–12) in Pichia pastoris: purification and characterization. Protein Expr Purif 50:147–156

    Article  CAS  PubMed  Google Scholar 

  • Jozala AF, Geraldes DC, Tundisi LL et al (2016) Biopharmaceuticals from microorganisms: from production to purification. Braz J Microbiol 47:51–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judzewitsch PR, Corrigan N, Trujillo F, et al (2020) High-throughput process for the discovery of antimicrobial polymers and their upscaled production via flow polymerization. Macromolecules 53:631–639. https://doi.org/10.1021/acs.macromol.9b02207

    Article  CAS  Google Scholar 

  • Juturu V, Wu JC (2018) Heterologous protein expression in Pichia pastoris: latest research progress and applications. Chembiochem 19:7–21

    Article  CAS  PubMed  Google Scholar 

  • Kasemiire A, Avohou HT, De Bleye C et al (2021) Design of experiments and design space approaches in the pharmaceutical bioprocess optimization. Eur J Pharm Biopharm 166:144–154

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Kumar A, Kaur J (2018) Strategies for optimization of heterologous protein expression in E. coli: roadblocks and reinforcements. Int J Biol Macromol 106:803–822

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Dilawari R, Kaur A et al (2020) Recombinant expression, purification and PEGylation of Paneth cell peptide (cryptdin-2) with value added attributes against Staphylococcus aureus. Sci Rep 10:12164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanal O, Lenhoff AM (2021) Developments and opportunities in continuous biopharmaceutical manufacturing. MAbs 13:1903664

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Khow O, Suntrarachun S (2012) Strategies for production of active eukaryotic proteins in bacterial expression system. Asian Pac J Trop Biomed 2:159–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimple ME, Brill AL, Pasker RL (2013) Overview of affinity tags for protein purification. Curr Protoc Protein Sci 73:9.9.1–9.9.23

    Article  Google Scholar 

  • Klubthawee N, Adisakwattana P, Hanpithakpong W et al (2020) A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa. Sci Rep 10:9117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koller M (2018) A review on established and emerging fermentation schemes for microbial production of polyhydroxyalkanoate (PHA) biopolyesters. Fermentation 4:1–30

    Article  CAS  Google Scholar 

  • Koo HB, Seo J (2019) Antimicrobial peptides under clinical investigation. Pept Sci 111:1–15

    Article  CAS  Google Scholar 

  • Kornecki M, Strube J (2018) Process analytical technology for advanced process control in biologics manufacturing with the aid of macroscopic kinetic modeling. Bioengineering 5:25

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar P, Kizhakkedathu J, Straus S (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomol Ther 8:4

    Google Scholar 

  • Lanza AM, Curran KA, Rey LG, Alper HS (2014) A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae. BMC Syst Biol 8:33

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • LaVallie ER, DiBlasio EA, Kovacic S et al (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology 11:187–193

    CAS  Google Scholar 

  • Laws M, Shaaban A, Rahman KM (2019) Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol Rev 43:490–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kim M, Cho J, Kim S (2002) Enhanced expression of tandem multimers of the antimicrobial peptide buforin II in Escherichia coli by the DEAD-box protein and trxB mutant. Appl Microbiol Biotechnol 58:790–796

    Article  CAS  PubMed  Google Scholar 

  • Lee EY, Lee MW, Fulan BM et al (2017) What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 7:20160153

    Article  PubMed  PubMed Central  Google Scholar 

  • Leite ML, Sampaio KB, Costa FF et al (2019) Molecular farming of antimicrobial peptides: available platforms and strategies for improving protein biosynthesis using modified virus vectors. An Acad Bras Cienc 91:1–23

    Article  CAS  Google Scholar 

  • León-Buitimea A, Garza-Cárdenas CR, Garza-Cervantes JA et al (2020) The demand for new antibiotics: antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front Microbiol 11:1–10

    Article  Google Scholar 

  • Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80:260–267

    Article  CAS  PubMed  Google Scholar 

  • Li T, Bin CX, Chen JC et al (2014a) Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnol J 9:1503–1511

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang J, Yang J et al (2014b) Recombinant expression, purification and characterization of antimicrobial peptide ORBK in Escherichia coli. Protein Expr Purif 95:182–187

    Article  CAS  PubMed  Google Scholar 

  • Li L, Mu L, Wang X et al (2017) A novel expression vector for the secretion of abaecin in Bacillus subtilis. Braz J Microbiol 48:809–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Ali Z, Liu X et al (2019) Expression of recombinant tachyplesin I in Pichia pastoris. Protein Expr Purif 157:50–56

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Cheng Q, Guo H et al (2020) Expression of hybrid peptide EF-1 in Pichia pastoris, its purification, and antimicrobial characterization. Molecules 25:5538

    Article  CAS  PubMed Central  Google Scholar 

  • Liang W, Diana J (2020) The dual role of antimicrobial peptides in autoimmunity. Front Immunol 11:1–9

    Article  CAS  Google Scholar 

  • Lima SMF, Freire MS, Gomes ALO et al (2017) Antimicrobial and immunomodulatory activity of host defense peptides, clavanins and LL-37, in vitro: an endodontic perspective. Peptides 95:16–24

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Xie K, Chen D et al (2020) Expression and functional characterization of a novel antimicrobial peptide: human beta-defensin 118. Biomed Res Int 2020:1–10

    Google Scholar 

  • Liscano Y, Oñate-Garzón J, Delgado JP (2020) Peptides with dual antimicrobial–anticancer activity: strategies to overcome peptide limitations and rational design of anticancer peptides. Molecules 25:4245

    Article  CAS  PubMed Central  Google Scholar 

  • Liu SN, Han Y, Zhou ZJ (2011) Fusion expression of pedA gene to obtain biologically active pediocin PA-1 in Escherichia coli. J Zhejiang Univ Sci B 12:65–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yang N, Mao R et al (2020) A new high-yielding antimicrobial peptide NZX and its antibacterial activity against Staphylococcus hyicus in vitro/vivo. Appl Microbiol Biotechnol 104:1555–1568

    Article  CAS  PubMed  Google Scholar 

  • Lombardi L, Shi Y, Falanga A et al (2019) Enhancing the potency of antimicrobial peptides through molecular engineering and self-assembly. Biomacromolecules 20:1362–1374

    Article  CAS  PubMed  Google Scholar 

  • Looser V, Bruhlmann B, Bumbak F et al (2015) Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv 33:1177–1193

    Article  CAS  PubMed  Google Scholar 

  • Love KR, Dalvie NC, Love JC (2018) The yeast stands alone: the future of protein biologic production. Curr Opin Biotechnol 53:50–58

    Article  CAS  PubMed  Google Scholar 

  • Mahlapuu M, Björn C, Ekblom J (2020) Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol 40:978–992

    Article  CAS  PubMed  Google Scholar 

  • Mauro VP, Chappell SA (2014) A critical analysis of codon optimization in human therapeutics. Trends Mol Med 20:604–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9:580–588

    Article  CAS  PubMed  Google Scholar 

  • Mears L, Stocks SM, Sin G, Gernaey KV (2017) A review of control strategies for manipulating the feed rate in fed-batch fermentation processes. J Biotechnol 245:34–46

    Article  CAS  PubMed  Google Scholar 

  • Meng DM, Lv YJ, Zhao JF et al (2018) Efficient production of a recombinant Venerupis philippinarum defensin (VpDef) in Pichia pastoris and characterization of its antibacterial activity and stability. Protein Expr Purif 147:78–84

    Article  CAS  PubMed  Google Scholar 

  • Meng D-M, Li W-J, Shi L-Y et al (2019) Expression, purification and characterization of a recombinant antimicrobial peptide Hispidalin in Pichia pastoris. Protein Expr Purif 160:19–27

    Article  CAS  PubMed  Google Scholar 

  • Mercer DK, Torres MDT, Duay SS et al (2020) Antimicrobial susceptibility testing of antimicrobial peptides to better predict efficacy. Front Cell Infect Microbiol 10:1–34

    Article  CAS  Google Scholar 

  • Mirski T, Niemcewicz M, Bartoszcze M et al (2017) Utilisation of peptides against microbial infections—a review. Ann Agric Environ Med 25:205–210

    Article  PubMed  CAS  Google Scholar 

  • Mishra B, Reiling S, Zarena D, Wang G (2017) Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol 38:87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller TSB, Hay J, Saxton MJ et al (2017) Human β-defensin-2 production from S. cerevisiae using the repressible MET17 promoter. Microb Cell Factories 16:11

    Article  CAS  Google Scholar 

  • Moravej H, Moravej Z, Yazdanparast M et al (2018) Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb Drug Resist 24:747–767

    Article  CAS  PubMed  Google Scholar 

  • Moretta A, Salvia R, Scieuzo C et al (2020) A bioinformatic study of antimicrobial peptides identified in the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae). Sci Rep 10:16875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moretta A, Scieuzo C, Petrone AM et al (2021) Antimicrobial peptides: a new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol 11:1–26

    Article  CAS  Google Scholar 

  • Mulder KC, de Lima LA, Aguiar PS et al (2015) Production of a modified peptide clavanin in Pichia pastoris: cloning, expression, purification and in vitro activities. AMB Express 5:46

    Article  PubMed Central  Google Scholar 

  • Naumov GI, Naumova ES, Boundy-Mills KL (2018) Description of Komagataella mondaviorum sp. nov., a new sibling species of Komagataella (Pichia) pastoris. Antonie van Leeuwenhoek 111:1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472

    Article  CAS  PubMed  Google Scholar 

  • Öztürk S, Ergün BG, Çalık P (2017) Double promoter expression systems for recombinant protein production by industrial microorganisms. Appl Microbiol Biotechnol 101:7459–7475

    Article  PubMed  CAS  Google Scholar 

  • Pal G, Srivastava S (2015) Scaling up the production of recombinant antimicrobial Plantaricin E from a heterologous host, Escherichia coli. Probiotics Antimicrob Proteins 7:216–221

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Yang Y, Liu X et al (2016) Secretory expression of a heterologous protein, Aiio-AIO6BS, in Bacillus subtilis via a non-classical secretion pathway. Biochem Biophys Res Commun 478:881–886

    Article  CAS  PubMed  Google Scholar 

  • Parachin NS, Mulder KC, Viana AAB et al (2012) Expression systems for heterologous production of antimicrobial peptides. Peptides 38:446–456

    Article  CAS  PubMed  Google Scholar 

  • Peebo K, Neubauer P (2018) Application of continuous culture methods to recombinant protein production in microorganisms. Microorganisms 6:56

    Article  CAS  PubMed Central  Google Scholar 

  • Philip P, Meier K, Kern D et al (2017) Systematic evaluation of characteristics of the membrane-based fed-batch shake flask. Microb Cell Factories 16:122

    Article  CAS  Google Scholar 

  • Pieracci JP, Armando JW, Westoby M, Thommes J (2018) Industry review of cell separation and product harvesting methods. In: Biopharmaceutical processing. Elsevier, Amsterdam, pp 165–206

    Chapter  Google Scholar 

  • Potvin G, Ahmad A, Zhang Z (2012) Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review. Biochem Eng J 64:91–105

    Article  CAS  Google Scholar 

  • Presnyak V, Alhusaini N, Chen YH et al (2015) Codon optimality is a major determinant of mRNA stability. Cell 160:1111–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn GA, Maloy AP, McClean S et al (2012) Lipopeptide biosurfactants from Paenibacillus polymyxa inhibit single and mixed species biofilms. Biofouling 28:1151–1166

    Article  CAS  PubMed  Google Scholar 

  • Raja Z, André S, Abbassi F et al (2017) Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent. PLoS One 12:e0174024

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ramirez LS, Pande J, Shekhtman A (2019) Helical structure of recombinant melittin. J Phys Chem B 123:356–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathore AS, Agarwal H, Sharma AK et al (2015) Continuous processing for production of biopharmaceuticals. Prep Biochem Biotechnol 45:836–849

    Article  CAS  PubMed  Google Scholar 

  • Rios AC, Moutinho CG, Pinto FC et al (2016) Alternatives to overcoming bacterial resistances: state-of-the-art. Microbiol Res 191:51–80

    Article  CAS  PubMed  Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:1–17

    Article  Google Scholar 

  • Rosano GL, Morales ES, Ceccarelli EA (2019) New tools for recombinant protein production in Escherichia coli: a 5-year update. Protein Sci 28:1412–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang M, Wei H, Zhang J et al (2017) Expression and characterization of the antimicrobial peptide ABP-dHC-cecropin A in the methylotrophic yeast Pichia pastoris. Protein Expr Purif 140:44–51

    Article  CAS  PubMed  Google Scholar 

  • São Pedro MN, Silva TC, Patil R, Ottens M (2021) White paper on high-throughput process development for integrated continuous biomanufacturing. Biotechnol Bioeng 118:3275–3286

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schuller A, Cserjan-Puschmann M, Tauer C et al (2020) Escherichia coli σ70 promoters allow expression rate control at the cellular level in genome-integrated expression systems. Microb Cell Factories 19:58

    Article  CAS  Google Scholar 

  • Scott B, Wilcock A (2006) Process analytical technology in the pharmaceutical industry: a toolkit for continuous improvement. PDA J Pharm Sci Technol 60:17–53

    PubMed  Google Scholar 

  • Sen A, Kargar K, Akgün E, Plnar MC (2020) Codon optimization: a mathematical programing approach. Bioinformatics 36:4012–4020

    Article  CAS  PubMed  Google Scholar 

  • Seyfi R, Kahaki FA, Ebrahimi T et al (2020) Antimicrobial peptides (AMPs): roles, functions and mechanism of action. Int J Pept Res Ther 26:1451–1463

    Article  CAS  Google Scholar 

  • Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria-Bertani Broth. J Bacteriol 189:8746–8749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla AA, Rameez S, Wolfe LS, Oien N (2017) High-throughput process development for biopharmaceuticals. In: Advances in biochemical engineering/biotechnology. Springer Nature, Berlin, pp 401–441

    Google Scholar 

  • Silva ON, Mulder KCL, Barbosa AEAD et al (2011) Exploring the pharmacological potential of promiscuous host-defense peptides: from natural screenings to biotechnological applications. Front Microbiol 2:1–14

    Google Scholar 

  • Silva TC, Eppink M, Ottens M (2021) Automation and miniaturization: enabling tools for fast, high-throughput process development in integrated continuous biomanufacturing. J Chem Technol Biotechnol jctb6792

    Google Scholar 

  • Singh N, Pizzelli K, Romero JK et al (2013) Clarification of recombinant proteins from high cell density mammalian cell culture systems using new improved depth filters. Biotechnol Bioeng 110:1964–1972

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Shukla P (2019) Antimicrobial peptides: recent insights on biotechnological interventions and future perspectives. Protein Pept Lett 26:79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa DA, Mulder KCL, Nobre KS et al (2016) Production of a polar fish antimicrobial peptide in Escherichia coli using an ELP-intein tag. J Biotechnol 234:83–89

    Article  CAS  PubMed  Google Scholar 

  • Taneda A, Asai K (2020) COSMO: a dynamic programming algorithm for multicriteria codon optimization. Comput Struct Biotechnol J 18:1811–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X-S, Shao H, Li T-J et al (2012) Dietary supplementation with bovine lactoferrampin–lactoferricin produced by Pichia pastoris fed-batch fermentation affects intestinal microflora in weaned piglets. Appl Biochem Biotechnol 168:887–898

    Article  CAS  PubMed  Google Scholar 

  • Tavares LS, Rettore JV, Freitas RM et al (2012) Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from guava seeds. Peptides 37:294–300

    Article  CAS  PubMed  Google Scholar 

  • Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222

    Article  CAS  PubMed  Google Scholar 

  • Thapa RK, Diep DB, Tønnesen HH (2020) Topical antimicrobial peptide formulations for wound healing: current developments and future prospects. Acta Biomater 103:52–67

    Article  CAS  PubMed  Google Scholar 

  • Tian ZG, Teng D, Yang YL et al (2007) Multimerization and fusion expression of bovine lactoferricin derivative LfcinB15-W4,10 in Escherichia coli. Appl Microbiol Biotechnol 75:117–124

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Yan Y, Yue Q et al (2017) Predicting synonymous codon usage and optimizing the heterologous gene for expression in E. coli. Sci Rep 7:9926

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tian L, Zhang D, Su P et al (2019) Design, recombinant expression, and antibacterial activity of a novel hybrid magainin–thanatin antimicrobial peptide. Prep Biochem Biotechnol 49:427–434

    Article  CAS  PubMed  Google Scholar 

  • Tornesello AL, Borrelli A, Buonaguro L et al (2020) Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules 25:2850

    Article  CAS  PubMed Central  Google Scholar 

  • Tripathi NK, Shrivastava A (2019) Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Front Bioeng Biotechnol 7:1–35

    Article  CAS  Google Scholar 

  • Viel JH, Jaarsma AH, Kuipers OP (2021) Heterologous expression of mersacidin in Escherichia coli elucidates the mode of leader processing. ACS Synth Biol 10:600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilas Boas LCP, de Lima LMP, Migliolo L et al (2017) Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus. Pept Sci 108:e22871

    Article  CAS  Google Scholar 

  • Vogt CM, Schraner EM, Aguilar C, Eichwald C (2016) Heterologous expression of antigenic peptides in Bacillus subtilis biofilms. Microb Cell Factories 15:137

    Article  CAS  Google Scholar 

  • Wade HM, Darling LEO, Elmore DE (2019) Hybrids made from antimicrobial peptides with different mechanisms of action show enhanced membrane permeabilization. Biochim Biophys Acta Biomembr 1861:182980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang A, Wang S, Shen M et al (2009) High level expression and purification of bioactive human α-defensin 5 mature peptide in Pichia pastoris. Appl Microbiol Biotechnol 84:877–884

    Article  CAS  PubMed  Google Scholar 

  • Wang FJ, Song HL, Wang XM et al (2012) Tandem multimer expression and preparation of hypoglycemic peptide MC6 from Momordica charantia in Escherichia coli. Appl Biochem Biotechnol 166:612–619

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Dou X, Song J et al (2019) Antimicrobial peptides: promising alternatives in the post feeding antibiotic era. Med Res Rev 39:831–859

    Article  CAS  PubMed  Google Scholar 

  • Weinacker D, Rabert C, Zepeda AB et al (2013) Applications of recombinant Pichia pastoris in the healthcare industry. Braz J Microbiol 44:1043–1048

    Article  PubMed  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  PubMed  Google Scholar 

  • Wibowo D, Zhao C-X (2019) Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl Microbiol Biotechnol 103:659–671

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Wang Q, Zheng Z et al (2014) Design, characterization and expression of a novel hybrid peptides melittin (1-13)-LL37 (17-30). Mol Biol Rep 41:4163–4169

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Gao Y, Wang X et al (2017) Peroxisome-targeted and tandem repeat multimer expressions of human antimicrobial peptide LL37 in Pichia pastoris. Prep Biochem Biotechnol 47:229–235

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Jin F, Yu X et al (2007) High-level expression of the recombinant hybrid peptide cecropinA(1-8)-magainin2(1-12) with an ubiquitin fusion partner in Escherichia coli. Protein Expr Purif 55:175–182

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Teng D, Mao R et al (2019) A recombinant fungal defensin-like peptide-P2 combats multidrug-resistant Staphylococcus aureus and biofilms. Appl Microbiol Biotechnol 103:5193–5213

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wu D, Wang C et al (2020) Hybridization with insect cecropin a (1–8) improve the stability and selectivity of naturally occurring peptides. Int J Mol Sci 21:1470

    Article  CAS  PubMed Central  Google Scholar 

  • Ÿztürk S, Ÿalık P, Ÿzdamar TH (2016) Fed-batch biomolecule production by Bacillus subtilis: a state of the art review. Trends Biotechnol 34:329–345

    Article  PubMed  CAS  Google Scholar 

  • Zandsalimi F, Talaei S, Noormohammad Ahari M et al (2020) Antimicrobial peptides: a promising strategy for lung cancer drug discovery? Expert Opin Drug Discov 15:1343–1354

    Article  CAS  PubMed  Google Scholar 

  • Zhan N, Zhang L, Yang H et al (2021) Design and heterologous expression of a novel dimeric LL37 variant in Pichia pastoris. Microb Cell Factories 20:143

    Article  CAS  Google Scholar 

  • Zhang J, Movahedi A, Wei Z et al (2016) High-level SUMO-mediated fusion expression of ABP-dHC-cecropin A from multiple joined genes in Escherichia coli. Anal Biochem 509:15–23

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Su L, Duan X et al (2017) High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system. Microb Cell Factories 16:32

    Article  CAS  Google Scholar 

  • Zhang X, Jiang A, Qi B et al (2018) Secretion expression of human neutrophil peptide 1 (HNP1) in Pichia pastoris and its functional analysis against antibiotic-resistant Helicobacter pylori. Appl Microbiol Biotechnol 102:4817–4827

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wei D, Zhan N et al (2020) Heterologous expression of the novel α-helical hybrid peptide PR-FO in Bacillus subtilis. Bioprocess Biosyst Eng 43:1619–1627

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Wang J, Deng R, Wang X (2008) Scale-up fermentation of recombinant Candida rugosa lipase expressed in Pichia pastoris using the GAP promoter. J Ind Microbiol Biotechnol 35:189–195

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Tang J, Cao L et al (2015) Characterization of bioactive recombinant antimicrobial peptide parasin I fused with human lysozyme expressed in the yeast Pichia pastoris system. Enzym Microb Technol 77:61–67

    Article  CAS  Google Scholar 

  • Zhou Y, Cao W, Wang J et al (2005) Comparison of expression of monomeric and multimeric adenoregulin genes in Escherichia coli and Pichia pastoris. Protein Pept Lett 12:349–355

    Article  CAS  PubMed  Google Scholar 

  • Zhoua Z, Danga Y, Zhou M et al (2016) Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci U S A 113:E6117–E6125

    Google Scholar 

  • Zobel S, Kumpfmüller J, Süssmuth RD, Schweder T (2015) Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Appl Microbiol Biotechnol 99:681–691

    Article  CAS  PubMed  Google Scholar 

  • Zydney AL (2016) Continuous downstream processing for high value biological products: a review. Biotechnol Bioeng 113:465–475

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Coordination of Improvement of Higher Education Personnel (CAPES); National Council of Technological and Scientific Development (CNPq), Federal District Research Support Foundation (FAPDF) and Support Foundation for the Development of Education, Science and Technology of the State of Mato Grosso do Sul (FUNDECT).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira, K.B.S., Leite, M.L., Rodrigues, G.R., da Cunha, N.B., Dias, S.C., Franco, O.L. (2022). Current Trends and Prospects in Antimicrobial Peptide Bioprocessing. In: Rehm, B.H.A., Wibowo, D. (eds) Microbial Production of High-Value Products. Microbiology Monographs, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-031-06600-9_5

Download citation

Publish with us

Policies and ethics