Skip to main content
Log in

Immobilization of lipase on silica nanoparticles by adsorption followed by glutaraldehyde cross-linking

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, Candida antarctica lipase B was immobilized on silica (SiO2) nanoparticles by physical adsorption, and then cross-linked with glutaraldehyde (GA) to prepare cross-linked immobilized lipase (CLIL). During the condition of 1.28 mg/mL lipase concentration, 25 ℃ temperature, 2 h adsorption time, 0.01% GA (V/V) 7.5 mL and 2 h cross-linking time, the highest recovery activity of CLIL reached 87.82 ± 0.07% (22.55 ± 0.025 U/mg). Scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) confirmed that lipase was immobilized on the surface of SiO2 nanoparticles. The changes in secondary structures of CLIL indicated that cross-linking changed the secondary structure of lipase protein, which made the structure of CLIL more stable. Compared with the free lipase, the thermal stability and storage stability of CLIL was significantly improved, and the t1/2 at 60 °C was extended. Studies had shown that it was a feasible method to obtain CLIL by cross-linking after adsorbing lipase on SiO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig.13

Similar content being viewed by others

References

  1. Zhang X, Ai N, Chen L, Sun B (2020) Lipase-catalyzed modification of structural properties and sensory profile of recombined skim milk: From a non-volatile perspective. Food Sci Technol 118:108838

    CAS  Google Scholar 

  2. Wang B, Zhang C, He Q, Qin H, Liang G, Liu W (2018) Efficient resolution of (R, S)-1-(1-naphthyl)ethylamine by Candida antarctica lipase B in ionic liquids. Mol Catal 448:116–121

    Article  CAS  Google Scholar 

  3. Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y (2000) Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc 77:355–360

    Article  CAS  Google Scholar 

  4. Rafiee F, Rezaee M (2021) Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol 179:170–195

    Article  CAS  Google Scholar 

  5. Sampaio CS, Angelotti JAF, Fernandez-Lafuente R, Hirata DB (2022) Lipase immobilization via cross-linked enzyme aggregates: problems and prospects – A review. Int J Biol Macromol 215:434–449

    Article  CAS  Google Scholar 

  6. Salgado CA, dos Santos CIA, Vanetti MCD (2022) Microbial lipases: propitious biocatalysts for the food industry. Food Biosci 45:101509

    Article  CAS  Google Scholar 

  7. Nady D, Zaki AH, Raslan M, Hozayen W (2020) Enhancement of microbial lipase activity via immobilization over sodium titanate nanotubes for fatty acid methyl esters production. Int J Biol Macromol 146:1169–1179

    Article  CAS  Google Scholar 

  8. Guajardo N, Ahumada K, Domínguez de María P (2020) Immobilized lipase-CLEA aggregates encapsulated in lentikats® as robust biocatalysts for continuous processes in deep eutectic solvents. J Biotechnol 310:97–102

    Article  CAS  Google Scholar 

  9. Rehman S, Bhatti HN, Bilal M, Asgher M (2016) Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. Int J Biol Macromol 91:1161–1169

    Article  CAS  Google Scholar 

  10. Bilal M, Fernandes CD, Mehmood T, Nadeem F, Tabassam Q, Ferreira LFR (2021) Immobilized lipases-based nano-biocatalytic systems – A versatile platform with incredible biotechnological potential. Int J Biol Macromol 175:108–122

    Article  CAS  Google Scholar 

  11. Rodrigues RC, Virgen-Ortíz JJ, dos Santos JCS, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R (2019) Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 37:746–770

    Article  CAS  Google Scholar 

  12. Jesionowski T, Zdarta J, Krajewska B (2014) Enzyme immobilization by adsorption: a review. Adsorption 20:801–821

    Article  CAS  Google Scholar 

  13. Zucca P, Sanjust E (2014) Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms. Molecules 19:14139–14194

    Article  Google Scholar 

  14. Gholamzadeh P, Mohammadi Ziarani G, Badiei A (2017) Immobilization of lipases onto the SBA-15 mesoporous silica. Biocatal Biotransform 35:131–150

    Article  CAS  Google Scholar 

  15. Ali Z, Tian L, Zhao P, Zhang B, Ali N, Khan M, Zhang Q (2016) Immobilization of lipase on mesoporous silica nanoparticles with hierarchical fibrous pore. J Mol Catal B Enzym 134:129–135

    Article  CAS  Google Scholar 

  16. Liu J, Liu Y, Jin D, Meng M, Jiang Y, Ni L, Liu Z (2019) Immobilization of trypsin onto large-pore mesoporous silica and optimization enzyme activity via response surface methodology. Solid State Sci 89:15–24

    Article  CAS  Google Scholar 

  17. Girelli AM, Quattrocchi L, Scuto FR (2020) Silica-chitosan hybrid support for laccase immobilization. J Biotechnol 318:45–50

    Article  CAS  Google Scholar 

  18. Nabavi Zadeh PS, Mallak KA, Carlsson N, Åkerman B (2015) A fluorescence spectroscopy assay for real-time monitoring of enzyme immobilization into mesoporous silica particles. Anal Biochem 476:51–58

    Article  CAS  Google Scholar 

  19. Machado NB, Miguez JP, Bolina ICA, Salviano AB, Gomes RAB, Tavano OL, Luiz JHH, Tardioli PW, Cren ÉC, Mendes AA (2019) Preparation, functionalization and characterization of rice husk silica for lipase immobilization via adsorption. Enzyme Microb Technol 128:9–21

    Article  CAS  Google Scholar 

  20. Pang J, Zhou G, Liu R, Li T (2016) Esterification of oleic acid with methanol by immobilized lipase on wrinkled silica nanoparticles with highly ordered, radially oriented mesochannels. Mater Sci Eng 59:35–42

    Article  CAS  Google Scholar 

  21. Pota G, Bifulco A, Parida D, Zhao S, Rentsch D, Amendola E, Califano V, Costantini A (2021) Tailoring the hydrophobicity of wrinkled silica nanoparticles and of the adsorption medium as a strategy for immobilizing lipase: an efficient catalyst for biofuel production. Microporous Mesoporous Mater 328:111504

    Article  CAS  Google Scholar 

  22. Liu J, Ma R, Shi Y (2020) “Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods”-A review. Anal Chim Acta 1101:9–22

    Article  CAS  Google Scholar 

  23. Califano V, Sannino F, Costantini A, Avossa J, Cimino S, Aronne A (2018) wrinkled silica nanoparticles: efficient matrix for β-glucosidase immobilization. J Phys Chem C 122:8373–8379

    Article  CAS  Google Scholar 

  24. Califano V, Costantini A (2020) Immobilization of cellulolytic enzymes in mesostructured silica materials. Catalysts 10:706

    Article  CAS  Google Scholar 

  25. Kalantari M, Yu M, Liu Y, Huang X, Yu C (2019) Engineering mesoporous silica microspheres as hyper-activation supports for continuous enzymatic biodiesel production. Mater Chem Front 3:1816–1822

    Article  CAS  Google Scholar 

  26. Wang W, Jiang Y, Zhou L, Gao J (2011) Comparison of the properties of lipase immobilized onto mesoporous resins by different methods. Appl Biochem Biotechnol 164:561–572

    Article  CAS  Google Scholar 

  27. Liu DM, Chen J, Shi YP (2018) Advances on methods and easy separated support materials for enzymes immobilization. TrAC. Trends Anal Chem 102:332–342

    Article  CAS  Google Scholar 

  28. Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4:1583–1600

    Article  CAS  Google Scholar 

  29. Nuraliyah A, Wijanarko A, Hermansyah H (2018) Immobilization of Candida rugosa lipase by adsorption-crosslinking onto corn husk. IOP Conf. 34528

  30. Idris A, Bukhari A (2012) Immobilized Candida antarctica lipase B: Hydration, stripping off and application in ring opening polyester synthesis. Biotechnol Adv 30:550–563

    Article  CAS  Google Scholar 

  31. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  32. Guo H, Lei BS, Yu JW, Chen YF, Qian JQ (2021) Immobilization of lipase by dialdehyde cellulose crosslinked magnetic nanoparticles. Int J Biol Macromol 185:287–296

    Article  CAS  Google Scholar 

  33. Yang XY, Chen YF, Yao S, Qian JQ, Guo H, Cai X (2019) Preparation of immobilized lipase on magnetic nanoparticles dialdehyde starch. Carbohydr Polym 218:324–332

    Article  CAS  Google Scholar 

  34. Dhiman S, Srivastava B, Singh G, Khatri M, Arya SK (2020) Immobilization of mannanase on sodium alginate-grafted-β-cyclodextrin: An easy and cost effective approach for the improvement of enzyme properties. Int J Biol Macromol 156:1347–1358

    Article  CAS  Google Scholar 

  35. Rastian Z, Khodadadi AA, Vahabzadeh F, Bortolini C, Dong M, Mortazavi Y, Mogharei A, Naseh MV, Guo Z (2014) Facile surface functionalization of multiwalled carbon nanotubes by soft dielectric barrier discharge plasma: Generate compatible interface for lipase immobilization. Biochem Eng J 90:16–26

    Article  CAS  Google Scholar 

  36. Kulkarni NH, Muley AB, Bedade DK, Singhal RS (2019) Cross-linked enzyme aggregates of arylamidase from Cupriavidus oxalaticus ICTDB921: process optimization, characterization, and application for mitigation of acrylamide in industrial wastewater. Bioprocess Biosyst Eng 43:457–471

    Article  Google Scholar 

  37. Jafarian F, Bordbar AK, Zare A, Khosropour A (2018) The performance of immobilized Candida rugosa lipase on various surface modified graphene oxide nanosheets. Int J Biol Macromol 111:1166–1174

    Article  CAS  Google Scholar 

  38. HojnikPodrepšek G, Knez Ž, Leitgeb M (2019) Activation of cellulase cross-linked enzyme aggregates (CLEAs) in scCO2. J Supercrit Fluids 154:104629

    Article  Google Scholar 

  39. Nadar SS, Rathod VK (2016) Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase. Enzyme Microb Technol 83:78–87

    Article  CAS  Google Scholar 

  40. Verma R, Kumar A, Kumar S (2019) Synthesis and characterization of cross-linked enzyme aggregates (CLEAs) of thermostable xylanase from Geobacillus thermodenitrificans X1. Process Biochem 80:72–79

    Article  CAS  Google Scholar 

  41. Kartal F, Janssen MHA, Hollmann F, Sheldon RA, Kılınc A (2011) Improved esterification activity of Candida rugosa lipase in organic solvent by immobilization as Cross-linked enzyme aggregates (CLEAs). J Mol Catal B: Enzym 71:85–89

    Article  CAS  Google Scholar 

  42. Mahmod SS, Yusof F, Jami MS, Khanahmadi S, Shah H (2015) Development of an immobilized biocatalyst with lipase and protease activities as a multipurpose cross-linked enzyme aggregate (multi-CLEA). Process Biochem 50:2144–2157

    Article  CAS  Google Scholar 

  43. Talekar S, Pandharbale A, Ladole M, Nadar S, Mulla M, Japhalekar K, Pattankude K, Arage D (2013) Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour Technol 147:269–275

    Article  CAS  Google Scholar 

  44. Talekar S, Joshi A, Kambale S, Jadhav S, Nadar S, Ladole M (2017) A tri-enzyme magnetic nanobiocatalyst with one pot starch hydrolytic activity. Chem Eng J 325:80–90

    Article  CAS  Google Scholar 

  45. Stressler T, Ewert J, Eisele T, Fischer L (2015) Cross-linked enzyme aggregates (CLEAs) of PepX and PepN-production, partial characterization and application of combi-CLEAs for milk protein hydrolysis. Biocatal Agric Biotechnol 4:752–760

    Article  Google Scholar 

  46. Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R (2021) Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 52:107821

    Article  CAS  Google Scholar 

  47. Bhushan B, Pal A, Jain V (2015) Improved Enzyme Catalytic Characteristics upon Glutaraldehyde Cross-Linking of Alginate Entrapped Xylanase Isolated from Aspergillus flavus MTCC 9390. Enzyme Res 2015:210784–210789

    Article  Google Scholar 

  48. Binhayeeding N, Yunu T, Pichid N, Klomklao S, Sangkharak K (2020) Immobilisation of Candida rugosa lipase on polyhydroxybutyrate via a combination of adsorption and cross-linking agents to enhance acylglycerol production. Process Biochem 95:174–185

    Article  CAS  Google Scholar 

  49. Lage FAP, Bassi JJ, Corradini MCC, Todero LM, Luiz JHH, Mendes AA (2016) Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Enzyme Microb Technol 84:56–67

    Article  CAS  Google Scholar 

  50. Wang S, Zheng D, Yin L, Wang F (2017) Preparation, activity and structure of cross-linked enzyme aggregates (CLEAs) with nanoparticle. Enzyme Microb Technol 107:22–31

    Article  CAS  Google Scholar 

  51. Fathali Z, Rezaei S, Faramarzi MA, Habibi-Rezaei M (2019) Catalytic phenol removal using entrapped cross-linked laccase aggregates. Int J Biol Macromol 122:359–366

    Article  CAS  Google Scholar 

  52. Schoevaart R, Wolbers MW, Golubovic M, Ottens M, Kieboom APG, van Rantwijk F, van der Wielen LAM, Sheldon RA (2004) Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng 87:754–762

    Article  CAS  Google Scholar 

  53. Tahmasbi L, Sedaghat T, Motamedi H, Kooti M (2018) Mesoporous silica nanoparticles supported copper(II) and nickel(II) Schiff base complexes: Synthesis, characterization, antibacterial activity and enzyme immobilization. J Solid State Chem 258:517–525

    Article  CAS  Google Scholar 

  54. Zeng HY, Cai LH, Cai XL, Wang YJ, Li YQ (2011) Structure characterization of protein fractions from lotus ( Nelumbo nucifera) seed. J Mol Struct 1001:139–144

    Article  CAS  Google Scholar 

  55. Chaudhari SA, Singhal RS (2017) A strategic approach for direct recovery and stabilization of Fusarium sp. ICT SAC1 cutinase from solid state fermented broth by carrier free cross-linked enzyme aggregates. Int J Biol Macromol 98:610–621

    Article  CAS  Google Scholar 

  56. Hero JS, Romero CM, Pisa JH, Perotti NI, Olivaro C, Martinez MA (2018) Designing cross-linked xylanase aggregates for bioconversion of agroindustrial waste biomass towards potential production of nutraceuticals. Int J Biol Macromol 111:229–236

    Article  CAS  Google Scholar 

  57. Özacar M, Mehde AA, Mehdi WA, Özacar ZZ, Severgün O (2019) The novel multi cross-linked enzyme aggregates of protease, lipase, and catalase production from the sunflower seeds, characterization and application. Colloids Surf B 173:58–68

    Article  Google Scholar 

  58. Cao SL, Xu H, Li XH, Lou WY, Zong MH (2015) Papain@magnetic nanocrystalline cellulose nanobiocatalyst: a highly efficient biocatalyst for dipeptide biosynthesis in deep eutectic solvents. ACS Sustain Chem Eng 3:1589–1599

    Article  CAS  Google Scholar 

  59. Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307

    Article  CAS  Google Scholar 

  60. Zivkovic LTI, Zivkovic LS, Babic BM, Kokunesoski MJ, Jokic BM, Karadzic IM (2015) Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica and zirconia. Biochem Eng J 93:73–83

    Article  Google Scholar 

  61. Badoei-dalfard A, Karami Z, Malekabadi S (2019) Construction of CLEAs-lipase on magnetic graphene oxide nanocomposite: an efficient nanobiocatalyst for biodiesel production. Bioresour Technol 278:473–476

    Article  CAS  Google Scholar 

  62. Nadar SS, Muley AB, Ladole MR, Joshi PU (2016) Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase. Int J Biol Macromol 84:69–78

    Article  CAS  Google Scholar 

  63. Li S, Su Y, Liu Y, Sun L, Yu M, Wu Y (2016) Preparation and characterization of cross-linked enzyme aggregates (CLEAs) of recombinant thermostable alkylsulfatase (SdsAP) from Pseudomonas sp. S9. Process Biochem 51:2084–2089

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China National Key R&D Program during the 13th Five-year Plan Period [grant numbers 2016YFD0400803] and the Project of Zhejiang University of Technology, China [grant numbers KYY-HX-20210856].

Author information

Authors and Affiliations

Authors

Contributions

QJQ conceptualization, funding acquisition, investigation, writing—review and editing, and methodology; HAM writing—original draft, investigation, and data analysis; ZHX writing—original draft, investigation, and data analysis; DJ writing—original draft and data analysis; ZW visualization and investigation; CY methodology and investigation.

Corresponding author

Correspondence to Junqing Qian.

Ethics declarations

Conflict of interest

All authors have declared no conflict of interest.

Data availability

The raw/processed data to support the findings of this study are included in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Huang, A., Zhu, H. et al. Immobilization of lipase on silica nanoparticles by adsorption followed by glutaraldehyde cross-linking. Bioprocess Biosyst Eng 46, 25–38 (2023). https://doi.org/10.1007/s00449-022-02810-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02810-z

Keywords

Navigation