Skip to main content
Log in

Cross-linked enzyme aggregates of arylamidase from Cupriavidus oxalaticus ICTDB921: process optimization, characterization, and application for mitigation of acrylamide in industrial wastewater

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Acrylamidase produced by Cupriavidus oxalaticus ICTDB921 was recovered directly from the fermentation broth by ammonium sulfate (40–50%) precipitation and then stabilized by cross-linking with glutaraldehyde. The optimum conditions for the preparation of cross-linked enzyme aggregates of acrylamidase (acrylamidase-CLEAs) were using 60 mM glutaraldehyde for 10 min at 35 °C and initial broth pH of 7.0. Acrylamidase-CLEAs were characterized by SDS-PAGE, FTIR, particle size analyzer and SEM. Cross-linking shifted the optimal temperature and pH from 70 to 50 °C and 5–7 to 6–8, respectively. It also altered the secondary structure fractions, pH and thermal stability along with the kinetic constants, Km and Vmax, respectively. A complete degradation of acrylamide ~ 1.75 g/L in industrial wastewater was achieved after 60 min in a batch process under optimum operating conditions, and the kinetics was best represented by Edward model (R2 = 0.70). Acrylamidase-CLEAs retained ~ 40% of its initial activity after three cycles for both pure acrylamide and industrial wastewater, and were stable for 15 days at 4 °C, retaining ~ 25% of its original activity.

Article highlights

  • Acrylamidase from broth was recovered as cross linked enzyme aggregates (CLEAs)

  • Acrylamidase-CLEAs retained good kinetic and pH/thermal stability

  • Acrylamidase-CLEAs possessed good storage stability and reusability

  • Acrylamidase-CLEAs efficiently degraded acrylamide from industrial waste water

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization (1985) Environmental Health Criteria 1985, 49, 1. International programme on chemical safety web. https://www.inchem.org/documents/ehc/ehc/ehc49.htm/. Accessed 9 July 2018

  2. Scott JP, Fawell PD, Ralph DE, Farrow JB (1996) The shear degradation of high molecular-weight flocculant solutions. J Appl Polym Sci 62:2097–2106. https://doi.org/10.1002/(SICI)1097-4628(19961219)62:12%3c2097:AID-APP12%3e3.0.CO;2-3

    Article  CAS  Google Scholar 

  3. Kurenkov VF, Hartan HG, Lobanov FI (2002) Application of polyacrylamide flocculants for water treatment. Chemistry and computational simulations. Butlerov Commun 3:31–40

    Google Scholar 

  4. Weideborg M, Kallqvist T, Odegard KE, Sverdrup LE, Vik EA (2001) Environmental risk assessment of acrylamide and methyloacrylamide from a grouting agent used in the tunnel construction of romeriksporten Norway. Water Res 35:2645–2652. https://doi.org/10.1016/S0043-1354(00)00550-9

    Article  PubMed  CAS  Google Scholar 

  5. Gao ZC, Lin YL, Xu B, Pan Y, Xia SJ, Gao NY, Zhang TY, Chen M (2017) Degradation of acrylamide by the UV/chlorine advanced oxidation process. Chemosphere 187:268–276. https://doi.org/10.1016/j.chemosphere.2017.08.085

    Article  PubMed  CAS  Google Scholar 

  6. Brown L, Bancroft KCC, Rhead MM (1980) Laboratory studies on the adsorption of acrylamide monomer by sludge, sediments, clays, peat and synthetic resins. Water Res 14(7):779–781. https://doi.org/10.1016/0043-1354(80)90255-9

    Article  Google Scholar 

  7. National Science Foundation (1988) Drinking water treatment chemicals health effects. National Sanitation Foundation, Ann Arbor, p 60

    Google Scholar 

  8. Kitahara Y, Okuyama K, Ozawa K, Suga T, Takahashi S, Fujii T (2012) Thermal decomposition of acrylamide from polyacrylamide. J Therm Anal Calor 110(1):423–429. https://doi.org/10.1007/s10973-012-2544-7

    Article  CAS  Google Scholar 

  9. Chu W, Gao N, Yin D, Krasner SW, Templeton MR (2012) Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization. J Chromatogr A 1235:178–181. https://doi.org/10.1016/j.chroma.2012.02.074

    Article  PubMed  CAS  Google Scholar 

  10. Bedade DK, Singhal RS (2018) Biodegradation of acrylamide by a novel isolate, Cupriavidus oxalaticus ICTDB921: identification and characterization of the acrylamidase produced. Bioresour Technol 261:122–132. https://doi.org/10.1016/j.biortech.2018.04.012

    Article  PubMed  CAS  Google Scholar 

  11. Cha M, Chambliss GH (2013) Cloning and sequence analysis of the heat-stable acrylamidase from a newly isolated thermophilic bacterium, Geobacillus thermoglucosidasius AUT-01. Biodegradation 24(1):57–67. https://doi.org/10.1007/s10532-012-9557-6

    Article  PubMed  CAS  Google Scholar 

  12. Shukor MY, Gusmanizar N, Ramli J, Shamaan NA, MacCormack WP, Syed MA (2009) Isolation and characterization of an acrylamide-degrading Antarctic bacterium. J Environ Biol 30(1):107–112

    PubMed  CAS  Google Scholar 

  13. Ladole MR, Muley AB, Patil ID, Talib MI, Parate VR (2014) Immobilization of tropizyme-P on amino-functionalized magnetic nanoparticles for fruit juice clarification. J Biochem Technol 5(4):838–845

    Google Scholar 

  14. Muley AB, Chaudhari SA, Bankar SB, Singhal RS (2019) Stabilization of cutinase by covalent attachment on magnetic nanoparticles and improvement of its catalytic activity by ultrasonication. Ultrason Sonochem 55:174–185. https://doi.org/10.1016/j.ultsonch.2019.02.019

    Article  PubMed  CAS  Google Scholar 

  15. Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31(11):1639. https://doi.org/10.1007/s10529-009-0076-4

    Article  PubMed  CAS  Google Scholar 

  16. Sheldon RA (2019) CLEAs, Combi-CLEAs and ‘Smart’Magnetic CLEAs: biocatalysis in a bio-based economy. Catalysts 9(3):261. https://doi.org/10.3390/catal9030261

    Article  CAS  Google Scholar 

  17. Cui JD, Jia SR (2015) Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Crit Rev Biotechnol 35(1):15–28. https://doi.org/10.3109/07388551.2013.795516

    Article  PubMed  CAS  Google Scholar 

  18. Cui JD, Zhao YM, Li HB, Feng YX, Lin T, Zhong CH, Tan ZHL, Jia SR (2017) Encapsulation of spherical cross-linked phenylalanine ammonia lyase aggregates in mesoporous biosilica. J Agric Food Chem 65:618–625. https://doi.org/10.1021/acs.jafc.6b05003

    Article  PubMed  CAS  Google Scholar 

  19. Cui JD, Cui LIL, Jia SR, Su ZhG, Zhang SP (2016) Hybird cross-linked lipase aggregates with magnetic nanoparticles: a robust and recyclable biocatalysis for epoxidation of oleic acid. J Agric Food Chem 64(38):7179–7187. https://doi.org/10.1021/acs.jafc.6b01939

    Article  PubMed  CAS  Google Scholar 

  20. Chaudhari SA, Singhal RS (2017) A strategic approach for direct recovery and stabilization of Fusarium sp. ICT SAC1 cutinase from solid state fermented broth by carrier free cross-linked enzyme aggregates. Int J Biol Macromol 98:610–621. https://doi.org/10.1016/j.ijbiomac.2017.02.033

    Article  PubMed  CAS  Google Scholar 

  21. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42(15):6223–6235. https://doi.org/10.1039/c3cs60075k

    Article  CAS  Google Scholar 

  22. Tükel SS, Hürrem F, Yildirim D, Alptekin O (2013) Preparation of crosslinked enzyme aggregates (CLEA) of catalase and its characterization. J Mol Catal B Enzym 97:252–257. https://doi.org/10.1016/j.molcatb.2013.09.007

    Article  CAS  Google Scholar 

  23. Li B, Dong S, Xie X, Xu Z, Li L (2012) Preparation and properties of cross-linked enzyme aggregates of cellulase. Adv Mater Res 581–582:257–260. https://doi.org/10.4028/www.scientific.net/AMR.581-582.257

    Article  CAS  Google Scholar 

  24. Khanahmadi S, Yusof F, Amid A, Mahmod SS, Mahat MK (2015) Optimized preparation and characterization of CLEA-lipase from cocoa pod husk. J Biotechnol 202:153–161. https://doi.org/10.1016/j.jbiotec.2014.11.015

    Article  PubMed  CAS  Google Scholar 

  25. Nadar SS, Muley AB, Ladole MR, Joshi PU (2016) Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase. Int J Biol Macromol 84:69–78. https://doi.org/10.1016/j.ijbiomac.2015.11.082

    Article  PubMed  CAS  Google Scholar 

  26. Sheldon RA (2011) Cross-linked enzyme aggregates as industrial biocatalysts. Org Process Res Dev 15:213–223. https://doi.org/10.1021/op100289

    Article  CAS  Google Scholar 

  27. Cui JD, Li LL, Zhao YM (2014) Simple technique for preparing stable and recyclable cross-linked enzyme aggregates with crude-pored microspherical silica core. Ind Eng Chem Res 53(42):16176–16182. https://doi.org/10.1021/ie5021206

    Article  CAS  Google Scholar 

  28. Bedade DB, Singhal RS (2017) Isolation and characterization of acrylamidase from arthrobacter sp. DBV1 and its ability to biodegrade acrylamide. Appl Biochem Biotechnol 182(2):570–585. https://doi.org/10.1007/s12010-016-2345-8

    Article  PubMed  CAS  Google Scholar 

  29. Bedade DB, Sutar YB, Singhal RS (2017) Chitosan coated calcium alginate beads for covalent immobilization of acrylamidase: process parameters and removal of acrylamide from coffee. Food Chem 275:95–104. https://doi.org/10.1016/j.foodchem.2018.09.090

    Article  CAS  Google Scholar 

  30. Nawaz M, Khan A, Bhattacharya D, Sittoneu P, Cerniglia C (1996) Physical, biochemical, and immunological characterization of a thermostable amidase from Klebsiella pneumoniae NCTR 1. J Bacteriol 178:2397–2401

    Article  CAS  Google Scholar 

  31. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  32. Muley AB, Chaudhari SA, Singhal RS (2017) Non-covalent conjugation of cutinase from Fusarium sp. ICT SAC1 with pectin for enhanced stability: process minutiae, kinetics, thermodynamics and structural study. Int J Biol Macromol 102:729–740. https://doi.org/10.1016/j.ijbiomac.2017.04.072

    Article  PubMed  CAS  Google Scholar 

  33. Muley AB, Chaudhari SA, Mulchandani KH, Singhal RS (2018) Extraction and characterization of chitosan from prawn shell waste and its conjugation with cutinase for enhanced thermo-stability. Int J Biol Macromol 111:1047–1058. https://doi.org/10.1016/j.ijbiomac.2018.01.115

    Article  PubMed  CAS  Google Scholar 

  34. He F (2011) Laemmli-SDS-PAGE. Bio-protocol Bio101:80. https://doi.org/10.21769/BioProtoc.80

    Article  Google Scholar 

  35. Muley AB, Thorat AS, Singhal RS, Babu KH (2018) A tri-enzyme co-immobilized magnetic complex: process details, kinetics, thermodynamics and applications. Int J Biol Macromol 118:1781–1795. https://doi.org/10.1016/j.ijbiomac.2018.07.022

    Article  PubMed  CAS  Google Scholar 

  36. Xu MQ, Wang SS, Li LN, Gao J, Zhang YW (2018) Combined cross-linked enzyme aggregates as biocatalysts. Catalysts 8(10):460. https://doi.org/10.3390/catal8100460

    Article  CAS  Google Scholar 

  37. Fazary AE, Ismadji S, Ju YH (2009) Biochemical studies on native and cross-linked aggregates of Aspergillus awamori feruloyl esterase. Int J Biol Macromol 44(3):240–248. https://doi.org/10.1016/j.ijbiomac.2008.12.012

    Article  PubMed  CAS  Google Scholar 

  38. Talekar S, Pandharbale A, Ladole M, Nadar S, Mulla M, Japhalekar K, Pattankude K, Arage D (2013) Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): A tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour Technol 147:269–275. https://doi.org/10.1016/j.biortech.2013.08.035

    Article  PubMed  CAS  Google Scholar 

  39. Gupta K, Jana AK, Kumar S, Jana MM (2015) Solid state fermentation with recovery of amyloglucosidase from extract by direct immobilization in cross linked enzyme aggregate for starch hydrolysis. Biocatal Agric Biotechnol 4:486–492. https://doi.org/10.1016/j.bcab.2015.07.007

    Article  Google Scholar 

  40. Agyei D, He L (2015) Evaluation of cross-linked enzyme aggregates of Lactobacillus cell-envelope proteinases, for protein degradation. Food Bioprod Process 94:59–69. https://doi.org/10.1016/j.fbp.2015.01.004

    Article  CAS  Google Scholar 

  41. Yamaguchi H, Kiyota Y, Miyazaki M (2018) Techniques for preparation of cross-linked enzyme aggregates and their applications in bioconversions. Catalysts 8(5):174. https://doi.org/10.3390/catal8050174

    Article  CAS  Google Scholar 

  42. Bedade DK, Muley AB, Singhal RS (2019) Magnetic cross-linked enzyme aggregates of acrylamidase from Cupriavidus oxalaticus ICTDB921 for biodegradation of acrylamide from industrial waste water. Bioresour Technol 272:137–145. https://doi.org/10.1016/j.biortech.2018.10.015

    Article  PubMed  CAS  Google Scholar 

  43. Panwar D, Kaira GS, Kapoor M (2017) Cross-linked enzyme aggregates (CLEAs) and magnetic nanocomposite grafted CLEAs of GH26 endo-β-1,4-mannanase: improved activity, stability and reusability. Int J Biol Macromol 105:1289–1299. https://doi.org/10.1016/j.ijbiomac.2017.07.154

    Article  PubMed  CAS  Google Scholar 

  44. Cui JD, Zhao YM, Zhong C, Tan ZL, Han PP, Jia SR (2017) Mesoporous phenylalanine ammonia lyase microspheres with improved stability through calcium carbonate templating. Int J Biol Macromol 98:887–896. https://doi.org/10.1016/j.ijbiomac.2017.02.059

    Article  PubMed  CAS  Google Scholar 

  45. Samoylova Y, Sorokina K, Piligaev A, Parmon V (2018) Preparation of stable cross-linked enzyme aggregates (CLEAs) of a Ureibacillus thermosphaericus esterase for application in malathion removal from wastewater. Catalysts 8(4):154. https://doi.org/10.3390/catal8040154

    Article  CAS  Google Scholar 

  46. Lai JQ, Hu ZL, Sheldon RA, Yang Z (2012) Catalytic performance of cross-linked enzyme aggregates of Penicillium expansum lipase and their use as catalyst for biodiesel production. Proc Biochem 47(12):2058–2063. https://doi.org/10.1016/j.procbio.2012.07.024

    Article  CAS  Google Scholar 

  47. Mafra ACO, Koppa W, Beltrameb MB, Giordanoa RLC, Ribeirob MPA, Tardiolia PW (2016) Diffusion effects of bovine serum albumin on cross-linked aggregates of catalase. J Mol Catal B Enzym 133:107–116. https://doi.org/10.1016/j.molcatb.2016.08.002

    Article  CAS  Google Scholar 

  48. Mayaux J, Cerbelaud E, Soubrier F, Yeh P, Blanche F, Petre D (1991) Purification, cloning and primary structure of a new enantioselective amidase from a Rhodococcus strain: structural evidence for a conserved genetic coupling with nitrile hydratase. J Bacteriol 173:6694–6704

    Article  CAS  Google Scholar 

  49. Schoevaart R, Wolbers MW, Golubovic M, Ottens M, Kieboom APG, Van Rantwijk F, Van der Wielen LAM, Sheldon RA (2004) Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng 87(6):754–762. https://doi.org/10.1002/bit.20184

    Article  PubMed  CAS  Google Scholar 

  50. Prabu CS, Thatheyus AJ (2007) Biodegradation of acrylamide employing free and immobilized cells of Pseudomonas aeruginosa. Int Biodeterior Biodegrad 60:69–73. https://doi.org/10.1016/j.ibiod.2006.11.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, for providing the financial supports to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekha S. Singhal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in this research.

Ethical approval

This article does not include any studies with human participants or animals performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, N.H., Muley, A.B., Bedade, D.K. et al. Cross-linked enzyme aggregates of arylamidase from Cupriavidus oxalaticus ICTDB921: process optimization, characterization, and application for mitigation of acrylamide in industrial wastewater. Bioprocess Biosyst Eng 43, 457–471 (2020). https://doi.org/10.1007/s00449-019-02240-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02240-4

Keywords

Navigation