Skip to main content
Log in

Effect of Glutaraldehyde Multipoint Covalent Treatments on Immobilized Lipase for Hydrolysis of Acidified Oil

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract  

Immobilized lipase is a green and sustainable catalyst for hydrolysis of acidified oil. Glutaraldehyde is widely used for lipase immobilization while the appropriate strategy optimizes the catalytic performance of lipase. In this research, lipase from Candida rugosa (CRL) was immobilized on spherical silica (SiO2) by glutaraldehyde multipoint covalent treatments, including covalent binding method and adsorption-crosslinking method. The enzymatic stability properties and performance in hydrolysis of refined oil and acidified oil were studied. We confirmed that the residual activity decreased while the stability increased because of the influence on secondary structure of lipase after multipoint covalent treatments. In the comparison of different immobilization strategies in multipoint covalent treatment, SiO2-CRL (covalent binding method) showed lower loading capacity than SiO2-CRL (adsorption-crosslinking method), resulting in low activity. However, SiO2-CRL (covalent binding method) showed better reusability and stability. Immobilized lipase via covalent binding method was more potential in the application of catalytic hydrolysis of acidified oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References 

  1. Ferreira, M. M., Oliveira, G., Basso, R. C., Mendes, A. A., & Hirata, D. B. (2019). Optimization of free fatty acid production by enzymatic hydrolysis of vegetable oils using a non-commercial lipase from Geotrichum candidum. Bioprocess and Biosystems Engineering, 42(10), 1647–1659.

    Article  PubMed  CAS  Google Scholar 

  2. Lima, R. T., Alves, A. M., de Paula, A. V., de Castro, H. F., & Andrade, G. S. S. (2019). Mycelium-bound lipase from Penicillium citrinum as biocatalyst for the hydrolysis of vegetable oils. Biocatalysis and Agricultural Biotechnology, 22, 101410.

    Article  Google Scholar 

  3. Wang, P., Ke, Z. D., Yi, J. J., Liu, X., Hao, L. M., Kang, Q. Z., & Lu, J. K. (2019). Effects of beta-cyclodextrin on the enzymatic hydrolysis of hemp seed oil by lipase Candida sp.99-125. Industrial Crops and Products, 129, 688–693.

    Article  CAS  Google Scholar 

  4. Shi, W. Y., Li, T. F., Li, H. B., Du, Q. Y., Zhang, H. X., & Qin, X. H. (2022). Continuous biodiesel production from acidic oil using a combination of the acid-, alkali-catalyzed membrane and GO/PVDF separation membrane. Journal of Industrial and Engineering Chemistry, 107, 268–279.

    Article  CAS  Google Scholar 

  5. Jiang, X., Long, F., Zhai, Q. L., Zhao, J. P., Liu, P., & Xu, J. M. (2022). Catalytic cracking of acidified oil and modification of pyrolytic oils from soap stock for the production of a high-quality biofuel. New Journal of Chemistry, 46(4), 1770–1778.

    Article  CAS  Google Scholar 

  6. Hamzah, M. A. F., Jahim, J. M., Abdul, P. M., & Asis, A. J. (2019). Investigation of temperature effect on start-up operation from anaerobic digestion of acidified palm oil mill effluent. Energies, 12(13), 2473.

    Article  CAS  Google Scholar 

  7. Ma, L. L., Lv, E. M., Du, L. X., Lu, J., & Ding, J. C. (2016). Statistical modeling/optimization and process intensification of microwave-assisted acidified oil esterification. Energy Conversion and Management, 122, 411–418.

    Article  CAS  Google Scholar 

  8. Abd Nasir, M. A., Jahim, J. M., Abdul, P. M., Silvamany, H., Maaroff, R. M., & Yunus, M. F. M. (2019). The use of acidified palm oil mill effluent for thermophilic biomethane production by changing the hydraulic retention time in anaerobic sequencing batch reactor. International Journal of Hydrogen Energy, 44(6), 3373–3381.

    Article  CAS  Google Scholar 

  9. Barnebey, H. L., & Brown, A. C. (1948). Continuous fat splitting plants using the colgate-emery process. Journal of the American Oil Chemists Society, 25, 95–99.

    Article  CAS  Google Scholar 

  10. Urrutia, P., Arrieta, R., Alvarez, L., Cardenas, C., Mesa, M., & Wilson, L. (2018). Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil: The impact of support functionalization on lipase activity, selectivity and stability. International journal of biological macromolecules, 108, 674–686.

    Article  PubMed  CAS  Google Scholar 

  11. Zied, Z., Edahech, A., Rigano, F., Micalizzi, G., Mondello, L., Kharrat, N., Sellami, M., & Cacciola, F. (2018). Monoacylglycerol and diacylglycerol production by hydrolysis of refined vegetable oil by-products using an immobilized lipase from Serratia sp. W3. Journal of Separation Science, 41(23), 4323–4330.

    Article  PubMed  CAS  Google Scholar 

  12. Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 29(2), 205–220.

    Article  PubMed  CAS  Google Scholar 

  13. Butler, M. F., Ng, Y. F., & Pudney, P. D. A. (2003). Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. Journal of Polymer Science Part A: Polymer Chemistry, 41(24), 3941–3953.

    Article  CAS  Google Scholar 

  14. Mi, F. L., Shyu, S. S., & Peng, C. K. (2005). Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. Journal of Polymer Science Part A Polymer Chemistry, 43(10), 1985–2000.

    Article  CAS  Google Scholar 

  15. Ren, Y., Abbood, H. A., He, F., Peng, H., & Huang, K. (2013). Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption. Chemical Engineering Journal, 226, 300–311.

    Article  CAS  Google Scholar 

  16. Xue, F., Chen, Q., Li, Y., Liu, E., & Li, D. (2019). Immobilized lysozyme onto 1,2,3,4-butanetetracarboxylic (BTCA)-modified magnetic cellulose microsphere for improving bio-catalytic stability and activities. Enzyme and Microbial Technology, 131, 109425.

    Article  PubMed  CAS  Google Scholar 

  17. Pinto, F., Fernandes, F. R., Caldeira, V., Castro, H., Souza, L. D., & Santos, A. (2021). Influence of the procedure to immobilize lipase on SBA-15 for biodiesel production from palm kernel oil. Catalysis Letters, 151, 2187–2196.

    Article  CAS  Google Scholar 

  18. Wong, W. K. L., Wahab, R. A., & Onoja, E. (2020). Chemically modified nanoparticles from oil palm ash silica-coated magnetite as support for Candida rugosa lipase-catalysed hydrolysis: Kinetic and thermodynamic studies. Chemical Papers, 74(4), 1253–1265.

    Article  CAS  Google Scholar 

  19. Xie, W. L., & Zang, X. Z. (2016). Immobilized lipase on core-shell structured Fe3O4-MCM-41 nanocomposites as a magnetically recyclable biocatalyst for interesterification of soybean oil and lard. Food Chemistry, 194, 1283–1292.

    Article  PubMed  CAS  Google Scholar 

  20. Fahimeh, E., Nematian, T., Salehi, Z., Khodadadi, A. A., & Dalai, A. K. (2021). Amine and aldehyde functionalized mesoporous silica on magnetic nanoparticles for enhanced lipase immobilization, biodiesel production, and facile separation. Fuel, 291(3), 120126.

    Google Scholar 

  21. Yu, D., Zhang, X., Wang, T., Geng, H., & Elfalleh, W. (2021). Immobilized Candida antarctica lipase B (CALB) on functionalized MCM-41: Stability and catalysis of transesterification of soybean oil and phytosterol. Food Bioscience, 40, 100906.

    Article  CAS  Google Scholar 

  22. Serpa, J. D., Matias, G. A. B., Fechine, P. B. A., da Costa, V. M., Freire, R. M., Denardin, J. C., Goncalves, L. R. B., de Macedo, A. C., & Rocha, M. V. P. (2021). New nanocomposite made of cashew apple bagasse lignin and Fe3O4 for immobilizing of lipase B from Candida antarctica aiming at esterification. Journal of Chemical Technology and Biotechnology, 96(9), 2472–2487.

    Article  CAS  Google Scholar 

  23. Gao, S. L., Wang, Y. J., Diao, X., Luo, G. S., & Dai, Y. Y. (2010). Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida rugosa lipase in SBA-15. Bioresource Technology, 101(11), 3830–3837.

    Article  PubMed  CAS  Google Scholar 

  24. Kim, M. I., Kim, J., Lee, J., Jia, H., Na, H. B., Youn, J. K., Kwak, J. H., Dohnalkova, A., Grate, J. W., & Wang, P. (2010). Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnology and Bioengineering, 96(2), 210–218.

    Article  Google Scholar 

  25. Alamsyah, G., Albels, V. A., Sahlan, M., & Hermansyah, H. (2017). Effect of chitosan’s amino group in adsorption-crosslinking immobilization of lipase enzyme on resin to catalyze biodiesel synthesis. Energy Procedia, 136, 47–52.

    Article  CAS  Google Scholar 

  26. Rathankumar, A. K., Sailavanyaa, S., Saikia, K., Gururajan, A., Sivanesan, S., Gosselin, M., Vaidyanathan, V. K., & Cabana, H. (2019). Systemic concocting of crosslinked enzyme aggregates of Candida antarctica lipase B (Novozyme 435) for the biomanufacturing of rhamnolipids. Journal of Surfactants and Detergents, 22(3), 477–490.

    Article  CAS  Google Scholar 

  27. Nuraliyah, A., Perdani, M. S., Putri, D. N., Sahlan, M., Wijanarko, A., & Hermansyah, H. (2021). Effect of additional amino group to improve the performance of immobilized lipase from Aspergillus niger by adsorption-crosslinking method. Frontiers in Energy Research, 9, 616945.

    Article  Google Scholar 

  28. Macquarrie, D. J., Jackson, D. B., Tailland, S., & Utting, K. A. (2001). Organically modified hexagonal mesoporous silicas (HMS)-remarkable effect of preparation solvent on physical and chemical properties. Journal of Materials Chemistry, 11(7), 1843–1849.

    Article  CAS  Google Scholar 

  29. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  PubMed  CAS  Google Scholar 

  30. Gupta, N., Rathi, P., & Gupta, R. (2002). Simplified para-nitrophenyl palmitate assay for lipases and esterases. Analytical Biochemistry, 311, 98–99.

    Article  PubMed  CAS  Google Scholar 

  31. Cai, Z. X., Wei, Y., Wu, M., Guo, Y. L., Xie, Y. P., Tao, R., Li, R. Q., Wang, P. G., Ma, A. Q., & Zhang, H. B. (2019). Lipase immobilized on layer-by-layer polysaccharide-coated Fe3O4@SiO2 microspheres as a reusable biocatalyst for the production of structured lipids. Acs Sustainable Chemistry & Engineering, 7(7), 6685–6695.

    Article  CAS  Google Scholar 

  32. Kuo, C. H., Liu, Y. C., Chang, C. M. J., Chen, J. H., Chang, C., & Shieh, C. J. (2012). Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydrate Polymers, 87(4), 2538–2545.

    Article  CAS  Google Scholar 

  33. Luo, Y., Jin, D., He, W., Huang, J., Chen, A., & Qi, F. (2021). A SiO2 microcarrier with an opal-like structure for cross-linked enzyme immobilization. Langmuir, 37(48), 14147–14156.

    Article  PubMed  CAS  Google Scholar 

  34. Cheng, Q. J., Chi, X. Y., Liang, Y. C., Li, W. X., Sun, J. X., Tao, J., & Wang, Z. (2023). immobilization of lipase in Cu-BTC MOF with enhanced catalytic performance for resolution of n-hydroxymethyl vince lactam. Applied Biochemistry and Biotechnology, 195, 1216–1230.

    Article  PubMed  CAS  Google Scholar 

  35. Coskun, G., Ciplak, Z., Yildiz, N., & Mehmetoglu, U. (2021). Immobilization of Candida antarctica lipase on nanomaterials and investigation of the enzyme activity and enantioselectivity. Applied Biochemistry and Biotechnology, 193(2), 430–445.

    Article  PubMed  CAS  Google Scholar 

  36. Rodrigues, R. C., Berenguer-Murcia, A., Carballares, D., Morellon-Sterling, R., & Fernandez-Lafuente, R. (2021). Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnology Advances, 52, 107821.

    Article  PubMed  CAS  Google Scholar 

  37. Tipton, K. F., & Dixon, H. (1979). Effects of pH on enzymes. Methods in Enzymology, 63, 183–234.

    Article  PubMed  CAS  Google Scholar 

  38. Xinyan, C., & B., He, M., Feng, D., Zhao, J., & Sun. (2020). Immobilized laccase on magnetic nanoparticles for enhanced lignin model compounds degradation. Chinese Journal of Chemical Engineering, 28(8), 165–172.

    Google Scholar 

  39. Guo, H., Lei, B., Yu, J., Chen, Y., & Qian, J. (2021). Immobilization of lipase by dialdehyde cellulose crosslinked magnetic nanoparticles. International journal of biological macromolecules, 185(11), 287–296.

    Article  PubMed  CAS  Google Scholar 

  40. Da, A., At, B., Dy, C., Sst, B., Fld, E. J. E., & Technology, M. (2020). Modified silicates and carbon nanotubes for immobilization of lipase from Rhizomucor miehei: Effect of support and immobilization technique on the catalytic performance of the immobilized biocatalysts. Enzyme and Microbial Technology, 144, 109739.

    Google Scholar 

  41. Iyer, P. V., & Ananthanarayan, L. (2008). Enzyme stability and stabilization-aqueous and non-aqueous environment. Process Biochemistry, 43(10), 1019–1032.

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was provided by the Natural Science Foundation of China (NSFC) (No. 21978112) and MOE & SAFEA for the 111 Project (B13025).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. The main design of the article was performed by Pingbo Zhang. Material preparation, data collection, and analysis were performed by Mingming Fan and Pingping Jiang. The first draft of the manuscript was written by Xiulin Fan. All the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Pingbo Zhang.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Consent to publish has been received from all participants.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 7295 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Zhang, P., Fan, M. et al. Effect of Glutaraldehyde Multipoint Covalent Treatments on Immobilized Lipase for Hydrolysis of Acidified Oil. Appl Biochem Biotechnol 195, 6942–6958 (2023). https://doi.org/10.1007/s12010-023-04477-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04477-y

Keywords

Navigation