Skip to main content
Log in

Immobilization of lipase on carboxylic acid-modified silica nanoparticles for olive oil glycerolysis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, the silica nanoparticles surface was modified by carboxylic acid with different number of alkyl chain and two different lipases were immobilized on it to increase the glycerolysis activity of the immobilized lipases in organic solvent system. Silica nanoparticles of about 15 nm diameter were grafted with various carboxylic acid modifiers from valeric, caprylic, capric, lauric, stearic and oleic acids. Lipases from Candida antarctica and Candida rugosa were immobilized onto the carboxylic acid, modified silica nanoparticles and used in the mono and diglycerides production through glycerolysis with or without organic solvents. When lipases immobilized on stearic acid-modified silica nanoparticles, both lipases gave higher activity compared to their corresponding free lipases. Immobilized C. rugosa were stable and reused for 11 cycles without loss in activity. The kinetic parameters, K m and V max of free and immobilized lipases were found using Lineweaver–Burk model. Results indicated that the immobilized lipase had a lower K m and V max when compared with the free lipase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Singh AK, Mukhopadhyay M (2012) Appl Biochem Biotechnol 166:486–520

    Article  CAS  Google Scholar 

  2. Schmidt RD, Verger R (1998) Angew Chem Int Ed 37:1608–1633

    Article  Google Scholar 

  3. Marszałł MP, Siódmiak T (2012) Catal Commun 24:80–84

    Article  Google Scholar 

  4. Singh AK, Mukhopadhyay M (2014) Korean J Chem Eng 31:1225–1232

    Article  CAS  Google Scholar 

  5. Nicoletti G, Cipolatti EP, Valério A, Carbonera NTG, Soares NS, Theilacker E, Ninow JL, de Oliveira D (2015) Bioprocess Biosyst Eng 38(9):1739–1748

    Article  CAS  Google Scholar 

  6. Prlainović NZ, Knežević-Jugović ZD, Mijin DZ, Bezbradica DI (2011) Bioprocess Biosyst Eng 34(7):803–810

    Article  Google Scholar 

  7. Singh AK, Mukhopadhyay M (2014) Arab J Sci Eng 39:2463–2474

    Article  CAS  Google Scholar 

  8. Wang W, Zhou W, Li J, Hao D, Su Z, Ma G (2015) Bioprocess Biosyst Eng 38(11):2107–2115

    Article  CAS  Google Scholar 

  9. Chen YZ, Yang CT, Ching CB, Xu R (2008) Langmuir 24:8877–8884

    Article  CAS  Google Scholar 

  10. Singh AK, Mukhopadhyay M (2016) Arab J Sci Eng 41:2553–2561

    Article  CAS  Google Scholar 

  11. Trana DT, Chena CL, Chang JS (2012) J Biotechnol 158:112–119

    Article  Google Scholar 

  12. Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S (1990) Nature 343:767–770

    Article  CAS  Google Scholar 

  13. Cho SW, Rhee JS (1993) Biotechnol Bioeng 41:204–210

    Article  CAS  Google Scholar 

  14. Schilke KF, Kelly C (2008) Biotechnol Bioeng 101:9–18

    Article  CAS  Google Scholar 

  15. Gamoh K, Sakata C, Kotsuki H (1999) Bunseki Kagaku 48:1149–1154

    Article  CAS  Google Scholar 

  16. Singh AK, Mukhopadhyay M (2012) Grasas Aceites 63:202–208

    Article  CAS  Google Scholar 

  17. Singh AK, Mukhopadhyay M (2016) Korean J Chem Eng 33(4):1247–1254

    Article  CAS  Google Scholar 

  18. Lowry OH, Rosenbrough MJ, Farr AL, Randell RJ (1951) J Biol Chem 193:265–275

    CAS  Google Scholar 

  19. Stellmach B (1992) Best immungsmethoden Enzyme. Chinese Light Industry Press, Beijing, p 229 (Chinese)

    Google Scholar 

  20. Richetti A, Munaretto CB, Lerin LA, Batistella L, Oliveira JV, Dallago RM, Astolfi V, Luccio MD, Mazutti MA, Oliveira D, Treichel H (2012) Bioprocess Biosyst Eng 35:383–388

    Article  CAS  Google Scholar 

  21. Idris A, Zain NAM, Suhaimi MS (2008) Process Biochem 43:331–338

    Article  CAS  Google Scholar 

  22. Kao FJ, Ekhorutomwen SA, Sawan SP (1997) Biotechnol Tech 11:849–854

    Article  CAS  Google Scholar 

  23. Li Y, Gao F, Wei W, Qu JB, Ma GH, Zhou WQ (2010) J Mol Catal B Enzym 66:182–189

    Article  CAS  Google Scholar 

  24. Bragger JM, Dunn RV, Daniel RM (2000) Biochim Biophys Acta 1480:278–282

    Article  CAS  Google Scholar 

  25. Changa MY, Juangb RS (2005) Enzyme Microb Technol 36:75–78

    Article  Google Scholar 

  26. Wang J, Meng G, Tao K, Feng M, Zhao X, Li Z, Xu H, Xia D, Lu JR (2012) PLoS One 7:e43478

    Article  CAS  Google Scholar 

  27. Arenas JF, Marcos J (1979) Acta Part A Mol Spectrosc 35:355–363

    Article  Google Scholar 

  28. Dean JA (1995) Analytical chemistry handbook. McGraw-Hill, New York, pp 61–67

    Google Scholar 

  29. Foresti ML, Ferreira ML (2005) Catal Today 107:23–28

    Article  Google Scholar 

  30. Bayne L, Ulijn RV, Halling PJ (2013) Chem Soc Rev 7:42(23):9000–9010

    Article  Google Scholar 

  31. Damstrup ML, Jensen T, Sparsø FV, Kiil SZ, Jensen AD, Xu X (2005) J Am Oil Chem Soc 82:559–564

    Article  CAS  Google Scholar 

  32. Zhong N, Li L, Xu X, Cheong L, Li B, Hu S, Zhao X (2009) J Am Oil Chem Soc 86:783–789

    Article  CAS  Google Scholar 

  33. Valério A, Kruger RL, Ninow J, Corazza FC, Oliveira DD, Oliveira JV, Corazza ML (2009) J Agric Food Chem 57:8350–8356

    Article  Google Scholar 

  34. Stevenson DE, Stanley RA, Furneaux RH (1993) Biotechnol Lett 15:1043–1048

    Article  CAS  Google Scholar 

  35. McNeill GP, Yamane T (1991) J Am Oil Chem Soc 68:6–10

    Article  CAS  Google Scholar 

  36. Damstrup ML, Kiil S, Jensen AD, Sparsø FV, Xu X (2007) J Agric Food Chem 55:7786–7792

    Article  CAS  Google Scholar 

  37. Tüter M, Aksoy HA (2000) Biotechnol Lett 22:31–34

    Article  Google Scholar 

  38. Brady C, Metcalfe L, Slaboszewski D, Frank D (1988) J Am Oil Chem Soc 65:917–921

    Article  CAS  Google Scholar 

  39. Yang D, Rhee JS (1991) Biotechnol Lett 13:553–558

    Article  CAS  Google Scholar 

  40. Gomes FM, Pereira EB, Decastro FH (2004) Biomacromolecules 5:17–23

    Article  CAS  Google Scholar 

  41. Yang Y, Bai YX, Li YF, Lei L, Cui YJ, Xia CG (2008) Process Biochem 43:1179–1185

    Article  Google Scholar 

  42. Kalantari M, Yu M, Yang Y, Strounina E, Gu Z, Huang X, Zhang J, Song H, Yu C (2017) Nano Res 10:605–617

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Sanjay M. Mahajani, Chemical Engineering Department, IIT Bombay for using HPLC of this research. The authors are grateful to the Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay, for providing the research facility for characterizations of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mausumi Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Mukhopadhyay, M. Immobilization of lipase on carboxylic acid-modified silica nanoparticles for olive oil glycerolysis. Bioprocess Biosyst Eng 41, 115–127 (2018). https://doi.org/10.1007/s00449-017-1852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1852-5

Keywords

Navigation