Skip to main content
Log in

Cold stress combined with salt or abscisic acid supplementation enhances lipogenesis and carotenogenesis in Phaeodactylum tricornutum (Bacillariophyceae)

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Compounds from microalgae such as ω3-fatty acids or carotenoid are commercially exploited within the pharmacology, nutraceutical, or cosmetic sectors. The co-stimulation of several compounds of interest may improve the cost-effectiveness of microalgal biorefinery pipelines. This study focussed on Phaeodactylum tricornutum to investigate the effects on lipogenesis and carotenogenesis of combined stressors, here cold temperature and addition of NaCl salt or the phytohormone abscisic acid, using a two-stage cultivation strategy. Cold stress with NaCl or phytohormone addition increased the neutral lipid content of the biomass (20 to 35%). These treatments also enhanced the proportions of EPA (22% greater than control) in the fatty acid profile. Also, these treatments had a stimulatory effect on carotenogenesis, especially the combination of cold stress with NaCl addition, which returned the highest production of fucoxanthin (33% increase). The gene expression of diacylglycerol acyltransferase (DGAT) and the ω-3 desaturase precursor (PTD15) were enhanced 4- and 16-fold relative to the control, respectively. In addition, zeaxanthin epoxidase 3 (ZEP3), was downregulated at low temperature when combined with abscisic acid. These results highlight the benefits of applying a combination of low temperature and salinity stress, to simultaneously enhance the yields of the valuable metabolites EPA and fucoxanthin in Phaeodactylum tricornutum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rizwan M, Mujtaba G, Memon SA et al (2018) Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sustain Energy Rev 92:394–404. https://doi.org/10.1016/j.rser.2018.04.034

    Article  Google Scholar 

  2. Yang R, Wei D, Xie J (2020) Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit Rev Biotechnol 40:993–1009. https://doi.org/10.1080/07388551.2020.1805402

    Article  CAS  PubMed  Google Scholar 

  3. Maeda Y, Nojima D, Yoshino T, Tanaka T (2017) Structure and properties of oil bodies in diatoms. Phil Trans R Soc B Biol Sci 372:20160408. https://doi.org/10.1098/rstb.2016.0408

    Article  CAS  Google Scholar 

  4. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  5. Dolch L-J, Maréchal E (2015) Inventory of fatty acid desaturases in the pennate diatom Phaeodactylum tricornutum. Mar Drugs 13:1317–1339. https://doi.org/10.3390/md13031317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pérez-López P, González-García S, Allewaert C et al (2014) Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum. Sci Total Environ 466–467:991–1002. https://doi.org/10.1016/j.scitotenv.2013.07.105

    Article  CAS  PubMed  Google Scholar 

  7. Ryckebosch E, Bruneel C, Muylaert K, Foubert I (2012) Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technol 24:128–130. https://doi.org/10.1002/lite.201200197

    Article  CAS  Google Scholar 

  8. Lafourcade M, Larrieu T, Mato S et al (2011) Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat Neurosci 14:345–350. https://doi.org/10.1038/nn.2736

    Article  CAS  PubMed  Google Scholar 

  9. Narayan B, Miyashita K, Hosakawa M (2006) Physiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—a Review. Food Rev Int 22:291–307. https://doi.org/10.1080/87559120600694622

    Article  CAS  Google Scholar 

  10. Shin SY, Bajpai VK, Kim HR, Kang SC (2007) Antibacterial activity of bioconverted eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) against foodborne pathogenic bacteria. Int J Food Microbiol 113:233–236. https://doi.org/10.1016/j.ijfoodmicro.2006.05.020

    Article  CAS  PubMed  Google Scholar 

  11. Becker EW (2013) Microalgae for aquaculture: nutritional aspects. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. John Wiley and Sons, Ltd., Oxford, pp 671–691

    Chapter  Google Scholar 

  12. Hemaiswarya S, Raja R, Ravi Kumar R et al (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27:1737–1746. https://doi.org/10.1007/s11274-010-0632-z

    Article  Google Scholar 

  13. Latowski D, Kuczyńska P, Strzałka K (2011) Xanthophyll cycle—a mechanism protecting plants against oxidative stress. Redox Rep 16:78–90. https://doi.org/10.1179/174329211X13020951739938

    Article  CAS  PubMed  Google Scholar 

  14. Niyogi KK, Björkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci 94:14162–14167. https://doi.org/10.1073/pnas.94.25.14162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rmiki N-E, Brunet C, Cabioch J, Lemoine Y (1996) Xanthophyll-cycle and photosynthetic adaptation to environment in macro- and microalgae. In: Lindstrom SC, Chapman DJ (eds) Fifteenth international seaweed symposium. Springer, Dordrecht, pp 407–413

    Chapter  Google Scholar 

  16. Peng J, Yuan J-P, Wu C-F, Wang J-H (2011) Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 9:1806–1828. https://doi.org/10.3390/md9101806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Zhang Y, Chen L et al (2018) Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis cultures. Bioprocess Biosyst Eng 41:1061–1071. https://doi.org/10.1007/s00449-018-1935-y

    Article  CAS  PubMed  Google Scholar 

  18. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553. https://doi.org/10.3390/en5051532

    Article  CAS  Google Scholar 

  19. Zhao Y, Wang H-P, Han B, Yu X (2019) Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: a review. Bioresour Technol 274:549–556. https://doi.org/10.1016/j.biortech.2018.12.030

    Article  CAS  PubMed  Google Scholar 

  20. Nagappan S, Devendran S, Tsai P-C et al (2019) Potential of two-stage cultivation in microalgae biofuel production. Fuel 252:339–349. https://doi.org/10.1016/j.fuel.2019.04.138

    Article  CAS  Google Scholar 

  21. Boelen P, van Dijk R, Sinninghe Damsté JS et al (2013) On the potential application of polar and temperate marine microalgae for EPA and DHA production. AMB Express 3:26. https://doi.org/10.1186/2191-0855-3-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mimouni V, Couzinet-Mossion A, Ulmann L, Wielgosz-Collin G (2018) Chapter 5–Lipids From microalgae. In: Levine IA, Fleurence J (eds) Microalgae in health and disease prevention. Academic Press, Cambridge, pp 109–131

    Chapter  Google Scholar 

  23. Sayanova O, Mimouni V, Ulmann L et al (2017) Modulation of lipid biosynthesis by stress in diatoms. Phil Trans R Soc B Biol Sci 372:20160407. https://doi.org/10.1098/rstb.2016.0407

    Article  CAS  Google Scholar 

  24. Yoshida K, Igarashi E, Mukai M et al (2003) Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid. Plant Cell Environ 26:451–457. https://doi.org/10.1046/j.1365-3040.2003.00976.x

    Article  CAS  Google Scholar 

  25. Zhang H, Yin W, Ma D et al (2021) Phytohormone supplementation significantly increases fatty acid content of Phaeodactylum tricornutum in two-phase culture. J Appl Phycol 33:13–23. https://doi.org/10.1007/s10811-020-02074-8

    Article  CAS  Google Scholar 

  26. Zulu NN, Zienkiewicz K, Vollheyde K, Feussner I (2018) Current trends to comprehend lipid metabolism in diatoms. Prog Lipid Res 70:1–16. https://doi.org/10.1016/j.plipres.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  27. Bertrand M (2010) Carotenoid biosynthesis in diatoms. Photosynth Res 106:89–102. https://doi.org/10.1007/s11120-010-9589-x

    Article  CAS  PubMed  Google Scholar 

  28. Kuczynska P, Jemiola-Rzeminska M, Strzalka K (2015) Photosynthetic pigments in diatoms. Mar Drugs 13:5847–5881. https://doi.org/10.3390/md13095847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Domergue F, Lerchl J, Zähringer U, Heinz E (2002) Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem 269:4105–4113. https://doi.org/10.1046/j.1432-1033.2002.03104.x

    Article  CAS  PubMed  Google Scholar 

  30. Eilers U, Dietzel L, Breitenbach J et al (2016) Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum. J Plant Physiol 192:64–70. https://doi.org/10.1016/j.jplph.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  31. Coesel S, Oborník M, Varela J et al (2008) Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PLoS ONE 3:e2896. https://doi.org/10.1371/journal.pone.0002896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Conceição D, Lopes RG, Derner RB et al (2020) The effect of light intensity on the production and accumulation of pigments and fatty acids in Phaeodactylum tricornutum. J Appl Phycol 32:1017–1025. https://doi.org/10.1007/s10811-019-02001-6

    Article  CAS  Google Scholar 

  33. Kuczynska P, Jemiola-Rzeminska M, Nowicka B et al (2020) The xanthophyll cycle in diatom Phaeodactylum tricornutum in response to light stress. Plant Physiol Biochem 152:125–137. https://doi.org/10.1016/j.plaphy.2020.04.043

    Article  CAS  PubMed  Google Scholar 

  34. Lopes RG, Cella H, Mattos JJ et al (2019) Effect of phosphorus and growth phases on the transcription levels of EPA biosynthesis genes in the diatom Phaeodactylum tricornutum. Braz J Bot 42:13–22. https://doi.org/10.1007/s40415-019-00515-4

    Article  Google Scholar 

  35. Siaut M, Heijde M, Mangogna M et al (2007) Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 406:23–35. https://doi.org/10.1016/j.gene.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  36. Kwak HS, Kim JYH, Woo HM et al (2016) Synergistic effect of multiple stress conditions for improving microalgal lipid production. Algal Res 19:215–224. https://doi.org/10.1016/j.algal.2016.09.003

    Article  Google Scholar 

  37. Aziz MMA, Kassim KA, Shokravi Z et al (2020) Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: a review. Renew Sustain Energy Rev 119:109621. https://doi.org/10.1016/j.rser.2019.109621

    Article  CAS  Google Scholar 

  38. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport. Springer, Boston, pp 29–60

    Chapter  Google Scholar 

  39. Qiao H, Cong C, Sun C et al (2016) Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum. Aquaculture 452:311–317. https://doi.org/10.1016/j.aquaculture.2015.11.011

    Article  CAS  Google Scholar 

  40. Mc Gee D, Archer L, Paskuliakova A et al (2018) Rapid chemotaxonomic profiling for the identification of high-value carotenoids in microalgae. J Appl Phycol 30:385–399. https://doi.org/10.1007/s10811-017-1247-7

    Article  CAS  Google Scholar 

  41. Egeland ES, Garrido JL, Clementson L et al (2011) Data sheets aiding identification of phytoplankton carotenoids and chlorophylls. In: Llewellyn CA, Egeland ES, Johnsen G, Roy S (eds) Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. Cambridge University Press, Cambridge, pp 665–674

    Google Scholar 

  42. Johnson ZI, Bidigare RR, Blinebry SK et al (2017) Screening for lipids from marine microalgae using Nile red. In: Lee SY (ed) Consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals. Springer, Berlin, pp 87–108

    Chapter  Google Scholar 

  43. Barone ME, Parkes R, Herbert H et al (2021) Comparative response of marine microalgae to H2O2-induced oxidative stress. Appl Biochem Biotechnol 193:4052–4067. https://doi.org/10.1007/s12010-021-03690-x

    Article  CAS  PubMed  Google Scholar 

  44. Archer L, McGee D, Parkes R et al (2021) Antioxidant bioprospecting in microalgae: characterisation of the potential of two marine heterokonts from irish waters. Appl Biochem Biotechnol 193:981–997. https://doi.org/10.1007/s12010-020-03467-8

    Article  CAS  PubMed  Google Scholar 

  45. Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244. https://doi.org/10.1038/nature07410

    Article  CAS  PubMed  Google Scholar 

  46. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45. https://doi.org/10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Curran-Everett D (2018) Explorations in statistics: the log transformation. Adv Physiol Educ 42:343–347. https://doi.org/10.1152/advan.00018.2018

    Article  PubMed  Google Scholar 

  48. Glazier DS (2013) Log-transformation is useful for examining proportional relationships in allometric scaling. J Theor Biol 334:200–203. https://doi.org/10.1016/j.jtbi.2013.06.017

    Article  PubMed  Google Scholar 

  49. Adarme-Vega TC, Thomas-Hall SR, Schenk PM (2014) Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol 26:14–18. https://doi.org/10.1016/j.copbio.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  50. Fu W, Wichuk K, Brynjólfsson S (2015) Developing diatoms for value-added products: challenges and opportunities. New Biotechnol 32:547–551. https://doi.org/10.1016/j.nbt.2015.03.016

    Article  CAS  Google Scholar 

  51. Liang M-H, Wang L, Wang Q et al (2019) High-value bioproducts from microalgae: strategies and progress. Crit Rev Food Sci Nutr 59:2423–2441. https://doi.org/10.1080/10408398.2018.1455030

    Article  CAS  PubMed  Google Scholar 

  52. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542. https://doi.org/10.1016/j.biotechadv.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  53. Huerlimann R, de Nys R, Heimann K (2010) Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng 107:245–257. https://doi.org/10.1002/bit.22809

    Article  CAS  PubMed  Google Scholar 

  54. Jung J-H, Sirisuk P, Ra CH et al (2019) Effects of green LED light and three stresses on biomass and lipid accumulation with two-phase culture of microalgae. Process Biochem 77:93–99. https://doi.org/10.1016/j.procbio.2018.11.014

    Article  CAS  Google Scholar 

  55. Sun X-M, Ren L-J, Zhao Q-Y et al (2018) Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnol Biofuels 11:272. https://doi.org/10.1186/s13068-018-1275-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li H-Y, Lu Y, Zheng J-W et al (2014) Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Mar Drugs 12:153–166. https://doi.org/10.3390/md12010153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lavens P, Sorgeloos P (1996) Manual on the production and use of live food for aquaculture. FAO, Rome

    Google Scholar 

  58. Kudo I, Miyamoto M, Noiri Y, Maita Y (2000) Combined effects of temperature and iron on the growth and physiology of the marine diatom Phaeodactylum Tricornutum (bacillariophyceae). J Phycol 36:1096–1102. https://doi.org/10.1046/j.1529-8817.2000.99042.x

    Article  CAS  Google Scholar 

  59. Chapman KD, Ohlrogge JB (2012) Compartmentation of triacylglycerol accumulation in plants *. J Biol Chem 287:2288–2294. https://doi.org/10.1074/jbc.R111.290072

    Article  CAS  PubMed  Google Scholar 

  60. Chen JE, Smith AG (2012) A look at diacylglycerol acyltransferases (DGATs) in algae. J Biotechnol 162:28–39. https://doi.org/10.1016/j.jbiotec.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  61. Harwood JL (1988) Fatty acid metabolism. Annu Rev Plant Physiol Plant Mol Biol 39:101–138. https://doi.org/10.1146/annurev.pp.39.060188.000533

    Article  CAS  Google Scholar 

  62. Barrero-Sicilia C, Silvestre S, Haslam RP, Michaelson LV (2017) Lipid remodelling: unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Sci 263:194–200. https://doi.org/10.1016/j.plantsci.2017.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jiang H, Gao K (2004) Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum Tricornutum (bacillariophyceae)1. J Phycol 40:651–654. https://doi.org/10.1111/j.1529-8817.2004.03112.x

    Article  CAS  Google Scholar 

  64. Erdoğan A, Karataş AB, Demirel Z, Dalay MC (2022) Purification of fucoxanthin from the diatom Amphora capitellata by preparative chromatography after its enhanced productivity via oxidative stress. J Appl Phycol 34:301–309. https://doi.org/10.1007/s10811-021-02625-7

    Article  CAS  Google Scholar 

  65. Ishika T, Moheimani NR, Bahri PA et al (2017) Halo-adapted microalgae for fucoxanthin production: effect of incremental increase in salinity. Algal Res 28:66–73. https://doi.org/10.1016/j.algal.2017.10.002

    Article  Google Scholar 

  66. Ishika T, Laird DW, Bahri PA, Moheimani NR (2019) Co-cultivation and stepwise cultivation of Chaetoceros muelleri and Amphora sp. for fucoxanthin production under gradual salinity increase. J Appl Phycol 31:1535–1544. https://doi.org/10.1007/s10811-018-1718-5

    Article  CAS  Google Scholar 

  67. Parihar P, Singh S, Singh R et al (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075. https://doi.org/10.1007/s11356-014-3739-1

    Article  CAS  Google Scholar 

  68. Rijstenbil JW (2003) Effects of UVB radiation and salt stress on growth, pigments and antioxidative defence of the marine diatom Cylindrotheca closterium. Mar Ecol Prog Ser 254:37–48. https://doi.org/10.3354/meps254037

    Article  CAS  Google Scholar 

  69. Sommella E, Conte GM, Salviati E et al (2018) Fast profiling of natural pigments in different Spirulina (Arthrospira platensis) dietary supplements by DI-FT-ICR and evaluation of their antioxidant potential by pre-column DPPH-UHPLC assay. Molecules 23:1152. https://doi.org/10.3390/molecules23051152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lepetit B, Volke D, Gilbert M et al (2010) Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154:1905–1920. https://doi.org/10.1104/pp.110.166454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lepetit B, Goss R, Jakob T, Wilhelm C (2012) Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth Res 111:245–257. https://doi.org/10.1007/s11120-011-9633-5

    Article  CAS  PubMed  Google Scholar 

  72. Blommaert L, Chafai L, Bailleul B (2021) The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes. Sci Rep 11:12750. https://doi.org/10.1038/s41598-021-91483-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cui Y, Thomas-Hall SR, Chua ET, Schenk PM (2021) Development of High-level omega-3 eicosapentaenoic acid (EPA) production from Phaeodactylum tricornutum. J Phycol 57:258–268. https://doi.org/10.1111/jpy.13082

    Article  CAS  PubMed  Google Scholar 

  74. Wang Z, Mou J, Qin Z et al (2022) An auxin-like supermolecule to simultaneously enhance growth and cumulative eicosapentaenoic acid production in Phaeodactylum tricornutum. Bioresour Technol 345:126564. https://doi.org/10.1016/j.biortech.2021.126564

    Article  CAS  PubMed  Google Scholar 

  75. Wu H, Li T, Wang G et al (2016) A comparative analysis of fatty acid composition and fucoxanthin content in six Phaeodactylum tricornutum strains from different origins. Chin J Oceanol Limnol 34:391–398. https://doi.org/10.1007/s00343-015-4325-1

    Article  CAS  Google Scholar 

  76. Yang Y-H, Du L, Hosokawa M et al (2017) Fatty acid and lipid class composition of the microalga Phaeodactylum tricornutum. J Oleo Sci 66:363–368. https://doi.org/10.5650/jos.ess16205

    Article  CAS  PubMed  Google Scholar 

  77. Hamilton ML, Warwick J, Terry A et al (2015) Towards the industrial production of omega-3 long chain polyunsaturated fatty acids from a genetically modified diatom Phaeodactylum tricornutum. PLoS ONE 10:e0144054. https://doi.org/10.1371/journal.pone.0144054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cui Y, Thomas-Hall S, Schenk P (2020) Isolation and cultivation of a Phaeodactylum tricornutum strain from the east coast of Australia for EPA production. Geol Earth Mar Sci. 2:1–7. https://doi.org/10.31038/GEMS.2020222

    Article  CAS  Google Scholar 

  79. Ruenwai R, Neiss A, Laoteng K et al (2011) Heterologous production of polyunsaturated fatty acids in Saccharomyces cerevisiae causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress. Biotechnol J 6:343–356. https://doi.org/10.1002/biot.201000316

    Article  CAS  PubMed  Google Scholar 

  80. Sun X-M, Geng L-J, Ren L-J et al (2018) Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae. Bioresour Technol 250:868–876. https://doi.org/10.1016/j.biortech.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  81. Bautista-Chamizo E, Sendra M, Cid Á et al (2018) Will temperature and salinity changes exacerbate the effects of seawater acidification on the marine microalga Phaeodactylum tricornutum? Sci Total Environ 634:87–94. https://doi.org/10.1016/j.scitotenv.2018.03.314

    Article  CAS  PubMed  Google Scholar 

  82. Santos MMD, Moreno-Garrido I, Gonçalves F et al (2002) An in situ bioassay for estuarine environments using the microalga Phaeodactylum tricornutum. Environ Toxicol Chem 21:567–574. https://doi.org/10.1002/etc.5620210315

    Article  PubMed  Google Scholar 

  83. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16. https://doi.org/10.1016/j.plantsci.2003.10.024

    Article  CAS  Google Scholar 

  84. Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22:27–34. https://doi.org/10.1007/s13562-012-0107-4

    Article  CAS  Google Scholar 

  85. Pancha I, Chokshi K, Maurya R et al (2015) Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 189:341–348. https://doi.org/10.1016/j.biortech.2015.04.017

    Article  CAS  PubMed  Google Scholar 

  86. AbdElgawad H, Zinta G, Hegab MM et al (2016) High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci 7:276

    Article  PubMed  PubMed Central  Google Scholar 

  87. Azachi M, Sadka A, Fisher M et al (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol 129:1320–1329. https://doi.org/10.1104/pp.001909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen H, Jiang J-G (2009) Osmotic responses of Dunaliella to the changes of salinity. J Cell Physiol 219:251–258. https://doi.org/10.1002/jcp.21715

    Article  CAS  PubMed  Google Scholar 

  89. Lu Y, Xu J (2015) Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci 20:273–282. https://doi.org/10.1016/j.tplants.2015.01.006

    Article  CAS  PubMed  Google Scholar 

  90. Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138. https://doi.org/10.4161/psb.2.3.4156

    Article  PubMed  PubMed Central  Google Scholar 

  91. Han X, Zeng H, Bartocci P et al (2018) Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation 4:25. https://doi.org/10.3390/fermentation4020025

    Article  CAS  Google Scholar 

  92. Sivaramakrishnan R, Incharoensakdi A (2020) Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids. Biotechnol Biofuels 13:7. https://doi.org/10.1186/s13068-019-1647-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cho D, Shin D, Jeon BW, Kwak JM (2009) ROS-mediated ABA signaling. J Plant Biol 52:102–113. https://doi.org/10.1007/s12374-009-9019-9

    Article  CAS  Google Scholar 

  94. Postiglione AE, Muday GK (2020) The role of ROS homeostasis in ABA-induced guard cell signaling. Front Plant Sci 11:968

    Article  PubMed  PubMed Central  Google Scholar 

  95. Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202:35–49. https://doi.org/10.1111/nph.12613

    Article  PubMed  Google Scholar 

  96. Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  97. Hirsch R, Hartung W, Gimmler H (1989) Abscisic acid content of algae under stress*. Bot Acta 102:326–334. https://doi.org/10.1111/j.1438-8677.1989.tb00113.x

    Article  CAS  Google Scholar 

  98. Kempa S, Krasensky J, Santo SD et al (2008) A central role of abscisic acid in stress-regulated carbohydrate metabolism. PLoS ONE 3:e3935. https://doi.org/10.1371/journal.pone.0003935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qiao T, Zhao Y, Zhong D, Yu X (2021) Hydrogen peroxide and salinity stress act synergistically to enhance lipids production in microalga by regulating reactive oxygen species and calcium. Algal Res 53:102017. https://doi.org/10.1016/j.algal.2020.102017

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the VES4US project funded by the European Union's Horizon 2020 research and innovation program under grant Agreement No 801338.

Author information

Authors and Affiliations

Authors

Contributions

DF, MEB and NT developed the experimental design. DF carried out the cell cultivation. DF and MEB performed the HPLC and GC–MS analyses. MEB carried out the Nile Red and TBARS analyses. DF and VG conducted the molecular biology analyses. DF and MEB led the drafting of the manuscript. All authors contributed to editing and finalising the manuscript.

Corresponding author

Correspondence to David Fierli.

Ethics declarations

Conflict of interest

All authors certify that they have no conflict of interest and no affiliations with or involvement in any organisation or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fierli, D., Barone, M.E., Graceffa, V. et al. Cold stress combined with salt or abscisic acid supplementation enhances lipogenesis and carotenogenesis in Phaeodactylum tricornutum (Bacillariophyceae). Bioprocess Biosyst Eng 45, 1967–1977 (2022). https://doi.org/10.1007/s00449-022-02800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02800-1

Keywords

Navigation