Skip to main content
Log in

Purification of fucoxanthin from the diatom Amphora capitellata by preparative chromatography after its enhanced productivity via oxidative stress

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae with high growth rates represent a potential source of carotenoids including fucoxanthin. For commercial fucoxanthin production, choosing the cultivation system is a critical parameter where the final biomass must contain a high content of the target product. To realize this, the reaction system must allow the use of stress conditions that induce the synthesis of these compounds. In this study, oxidative stress was applied to the diatom Amphora capitellata by the formation of reactive oxygen species in the culture medium through chemical reactions which generate. The effect of this oxidative stress on the amount of fucoxanthin and specific growth rate of A. capitellata was investigated. In the presence of H2O2/NaOCl, fucoxanthin content was 41.83 ± 0.92 mg g−1 as determined by HPLC–DAD a 2.20-fold increase compared with the control group. For the purification of fucoxanthin, preparative HPLC using a semi-prep C30 carotenoid column (10 × 250 mm, 5 µm) was used for the first time with an isocratic elution of 75:25 (methanol:acetonitrile) mobile phase at a flow rate of 4 mL min−1. Liquid chromatography tandem mass spectrometry (LC–MS/MS) was employed for the confirmation of fucoxanthin. The developed method has potential to obtain highly pure fucoxanthin for food and pharmaceutical applications using A. capitellata as a commercial source of fucoxanthin, particularly after its enhancement via oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the article.

References

  • Abd El-Baky HH, El Baz F, El-Baroty GS (2009) Enhancement of antioxidant production in Spirulina platensis under oxidative stress. Acta Physiol Plant 31:623–631

    Article  CAS  Google Scholar 

  • Almeida AC, Gomes T, Langford K, Thomas KV, Tollefsen KE (2017) Oxidative stress in the algae Chlamydomonas reinhardtii exposed to biocides. Aquat Toxicol 189:50–59

    Article  CAS  PubMed  Google Scholar 

  • Almeida TP, Ferreira J, Vettorazzi A, Azqueta A, Rocha E, Ramos AA (2018) Cytotoxic activity of fucoxanthin, alone and in combination with the cancer drugs imatinib and doxorubicin, in CML cell lines. Environ Toxicol Pharmacol 59:24–33

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2012) Carotenoids: handbook. Birkhäuser, Basel

    Google Scholar 

  • Cirulis JT, Scott JA, Ross GM (2013) Management of oxidative stress by microalgae. Can J Physiol Pharmacol 91:15–21

    Article  CAS  PubMed  Google Scholar 

  • Cogdell RJ, Gardiner AT (1993) [18] Functions of carotenoids in photosynthesis. Methods Enzymol 214:185–193

    Article  CAS  Google Scholar 

  • Dall’Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R (2007) Different roles of α-and β-branch xanthophylls in photosystem assembly and photoprotection. J Biol Chem 282:35056–35068

    Article  CAS  PubMed  Google Scholar 

  • de Almeida Torres M, de Liz MV, Martins LRR, Freitas AM (2018) Does the photo-Fenton reaction work for microalgae control? A case study with Desmodesmus subspicatus. Photochem Photobiol Sci 17:517–521

    Article  Google Scholar 

  • Demirel Z (2016) Identification and fatty acid composition of coccolithophore and diatom species isolated from Aegean Sea. Rom Biotechnol Lett 21:11746–11753

    CAS  Google Scholar 

  • Edge R, Truscott TG (2018) Singlet oxygen and free radical reactions of retinoids and carotenoids—a review. Antioxidants 7:5

    Article  PubMed Central  Google Scholar 

  • Egbuna C (2018) Antioxidants and phytochemicals. In: Egbuna C, Kumar S, Ifemeje JC, Kurhekar JV (eds) Phytochemistry. Apple Academic Press, Boca Raton, pp 131–146

    Chapter  Google Scholar 

  • Egeland ES, Eikrem W, Throndsen J, Wilhelm C, Zapata M, Liaaen-Jensen S (1995) Carotenoids from further prasinophytes. Biochem Syst Ecol 23:747–755

  • Erdogan A, Demirel Z, Dalay MC, Eroglu AE (2016) Fucoxanthin content of Cylindrotheca closterium and its oxidative stress mediated enhancement. Turk J Fish Aquat Sci 16:491–498

  • Farmilo A, Wilkinson F (1973) On the mechanism of quenching of singlet oxygen in solution. Photochem Photobiol 18:447–450

    Article  CAS  PubMed  Google Scholar 

  • Feijão E, Gameiro C, Franzitta M, Duarte B, Caçador I, Cabrita MT, Matos AR (2018) Heat wave impacts on the model diatom Phaeodactylum tricornutum: searching for photochemical and fatty acid biomarkers of thermal stress. Ecol Ind 95:1026–1037

    Article  Google Scholar 

  • Foo SC, Yusoff FM, Ismail M, Basri M, Chan KW, Khong NM, Yau SK (2015) Production of fucoxanthin-rich fraction (FxRF) from a diatom, Chaetoceros calcitrans (Paulsen) Takano 1968. Algal Res 12:26–32

    Article  Google Scholar 

  • Foo SC, Yusoff FM, Imam MU, Foo JB, Ismail N, Azmi NH, Tor YS, Khong NM, Ismail M (2019) Increased fucoxanthin in Chaetoceros calcitrans extract exacerbates apoptosis in liver cancer cells via multiple targeted cellular pathways. Biotechnol Rep 21:e00296

    Article  Google Scholar 

  • Foote CS, Denny RW (1968) Chemistry of singlet oxygen. VII. Quenching by β-carotene. J Am Chem Soc 90:6233–6235

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer C (1997)Oxygen metabolism and electron transport in photosynthesis. Oxidative stress and the molecular biology of antioxidant defences. Cold Spring Harbour Laboratory Press

  • Gao F, Yang H-L, Li C, Peng Y-Y, Lu M-M, Jin W-H, Bao J-J, Guo Y-M (2019) Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp. Biores Technol 282:118–124

    Article  CAS  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Liu B, Yang B, Sun P, Lu X, Liu J, Chen F (2016) Screening of diatom strains and characterization of Cyclotella cryptica as a potential fucoxanthin producer. Mar Drugs 14:125

    Article  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JM (1992) Biologically relevant metal ion-dependent hydroxyl radical generation An update. FEBS Lett 307:108–112

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, Oxford

    Book  Google Scholar 

  • Ip P-F, Chen F (2005) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process biochemistry 40:3491–3496

  • Ishika T, Moheimani NR, Bahri PA, Laird DW, Blair S, Parlevliet D (2017) Halo-adapted microalgae for fucoxanthin production: effect of incremental increase in salinity. Algal Res 28:66–73

    Article  Google Scholar 

  • Ishika T, Laird DW, Bahri PA, Moheimani NR (2019) Co-cultivation and stepwise cultivation of Chaetoceros muelleri and Amphora sp. for fucoxanthin production under gradual salinity increase. J Appl Phycol 31:1535–1544

    Article  CAS  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta Bioenergetics 1817:182–93

    Article  CAS  Google Scholar 

  • Jaswir I, Noviendri D, Salleh HM, Taher M, Miyashita K, Ramli N (2013) Analysis of fucoxanthin content and purification of all-trans-fucoxanthin from Turbinaria turbinata and Sargassum plagyophyllum by SiO2 open column chromatography and reversed phase-HPLC. J Liq Chromatogr Relat Technol 36:1340–1354

    Article  CAS  Google Scholar 

  • Kato S, Shinomura T (2020) Carotenoid synthesis and accumulation in microalgae under environmental stress. In: Jacob-Lopes E, Queiroz MI, Zepka LQ (eds) Pigments from microalgae handbook. Springer, Cham, pp 69–80

    Chapter  Google Scholar 

  • Khoo KS, Ooi CW, Chew KW, Foo SC, Show PL (2021) Bioprocessing of Chaetoceros calcitrans for the recovery of fucoxanthin using CO2-based alkyl carbamate ionic liquids. Bioresour Technol 322:124520

    Article  CAS  PubMed  Google Scholar 

  • Kim SM, Jung Y-J, Kwon O-N, Cha KH, Um B-H, Chung D, Pan C-H (2012a) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166:1843–1855

    Article  CAS  PubMed  Google Scholar 

  • Kim SM, Kang S-W, Kwon O-N, Chung D, Pan C-H (2012b) Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: characterization of extraction for commercial application. J Korean Soc Appl Biol Chem 55:477–483

    Article  CAS  Google Scholar 

  • Kobayashi M (2003) Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotechnology and Bioprocess Engineering 8(6):322–330

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo SY, Hwang J-H, Yang S-H, Um J-I, Hong KW, Kang K, Pan C-H, Hwang KT, Kim SM (2019) Anti-obesity effect of standardized extract of microalga Phaeodactylum tricornutum containing fucoxanthin. Mar Drugs 17:311

    Article  CAS  PubMed Central  Google Scholar 

  • Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sommerfeld M, Chen F, Hu Q (2008) Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). Journal of plant physiology 165:1783–1797

  • Lim S, Cheung P, Ooi V, Ang P (2002) Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. J Agric Food Chem 50:3862–3866

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Sun X, Sun X, Wang S, Xu Y (2019) Fucoxanthin isolated from Undaria pinnatifida can interact with Escherichia coli and lactobacilli in the intestine and inhibit the growth of pathogenic bacteria. J Ocean Univ China 18:926–932

    Article  CAS  Google Scholar 

  • Lu X, Sun H, Zhao W, Cheng K-W, Chen F, Liu B (2018) A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis. Mar Drugs 16:219

    Article  PubMed Central  Google Scholar 

  • Maeda H (2015) Nutraceutical effects of fucoxanthin for obesity and diabetes therapy: a review. J Oleo Sci 64:125–132

  • Maoka T (2020) Carotenoids as natural functional pigments. J Nat Med 74:1–16

    Article  CAS  PubMed  Google Scholar 

  • McClure DD, Luiz A, Gerber B, Barton GW, Kavanagh JM (2018) An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res 29:41–48

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Miyashita K, Beppu F, Hosokawa M, Liu XY, Wang SZ (2020) Bioactive significance of fucoxanthin and its effective extraction. Biocatal Agric 26:101639

  • Mojaat M, Pruvost J, Foucault A, Legrand J (2008) Effect of organic carbon sources and Fe2+ ions on growth and β-carotene accumulation by Dunaliella salina. Biochem Eng J 39:177–184

    Article  CAS  Google Scholar 

  • Munné-Bosch S, Peñuelas J (2004) Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions. Plant Sci 166:1105–1110

    Article  Google Scholar 

  • Natsume C, Aoki N, Aoyama T, Senda K, Matsui M, Ikegami A, Tanaka K, Azuma Y-T, Fujita T (2020) Fucoxanthin ameliorates atopic dermatitis symptoms by regulating keratinocytes and regulatory innate lymphoid cells. Int J Mol Sci 21:2180

    Article  CAS  PubMed Central  Google Scholar 

  • Rebolledo-Oyarce J, Mejía-López J, García G, Rodríguez-Córdova L, Sáez-Navarrete C (2019) Novel photobioreactor design for the culture of Dunaliella tertiolecta–impact of color in the growth of microalgae. Bioresource Technol 289:121645

    Article  CAS  Google Scholar 

  • Rezayian M, Niknam V, Ebrahimzadeh H (2019) Oxidative damage and antioxidative system in algae. Toxicol Rep 6:1309–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riccio G, Lauritano C (2020) Microalgae with immunomodulatory activities. Mar Drugs 18:2

    Article  CAS  Google Scholar 

  • Sivagnanam SP, Yin S, Choi JH, Park YB, Woo HC, Chun BS (2015) Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction. Mar Drugs 13:3422–3442

    Article  CAS  PubMed  Google Scholar 

  • Strati IF, Oreopoulou V (2011) Effect of extraction parameters on the carotenoid recovery from tomato waste. Int J Food Sci Technol 46:23–29

    Article  CAS  Google Scholar 

  • Subczynski WK, Markowska E, Sielewiesiuk J (1991) Effect of polar carotenoids on the oxygen diffusion-concentration product in lipid bilayers. An EPR spin label study. Biochim Biophys Acta Biomembr 1068:68–72

    Article  CAS  Google Scholar 

  • Sun X-M, Ren L-J, Zhao Q-Y, Ji X-J, Huang H (2018) Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnol Biofuels 11:272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Wang X, Liu J (2019) Screening of Isochrysis strains for simultaneous production of docosahexaenoic acid and fucoxanthin. Algal Res 41:101545

    Article  Google Scholar 

  • Telussa I, Nurachman Z (2019) Dynamics of β-carotene and fucoxanthin of tropical marine Navicula sp. as a response to light stress conditions. Algal Res 41:101530

    Article  Google Scholar 

  • Timmermans B (2017) Fucoxanthin: a promising bioproduct to be derived from algae? Masters Thesis, Rijksuniversiteit Goningen

  • Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vílchez C, Forján E, Cuaresma M, Bédmar F, Garbayo I, Vega JM (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9:319–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Widomska J, Welc R, Gruszecki WI (2019) The effect of carotenoids on the concentration of singlet oxygen in lipid membranes. Biochim Biophys Acta Biomembr 1861:845–51

    Article  CAS  PubMed  Google Scholar 

  • Xia S, Gao B, Fu J, Xiong J, Zhang C (2018) Production of fucoxanthin, chrysolaminarin, and eicosapentaenoic acid by Odontella aurita under different nitrogen supply regimes. J Biosci Bioeng 126:723–729

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Wei D (2020) Improving fucoxanthin production in mixotrophic culture of marine diatom Phaeodactylum tricornutum by LED Light shift and nitrogen supplementation. Front Bioeng Biotechnol 8:820

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This publication is based upon work from COST Action CA15136 (EUROCAROTEN) supported by COST (European Cooperation in Science and Technology) program. Moreover, the authors would like to acknowledge Ege University Application and Research Center for Testing and Analysis (EGE MATAL) for the facilities (SEM and HPLC-DAD Analyses), Pharmaceutical Sciences Research Centre (FABAL) for prep-HPLC analyses as well as HÜBTUAM for the mass analyses (LC-APCI-MS/MS). Finally, the authors are grateful to Dr. Çiğdem Yengin for her help and patience in purification studies.

Funding

This research was funded by the Scientific and Technological Research Council of Turkey (TÜBİTAK) through the COST Project 216Z167.

Author information

Authors and Affiliations

Authors

Contributions

AE, ZD, and MCD conceived and designed research. AE, ZD, and ABK conducted experiments. AE, ZD, and MCD analyzed data. AE and ABK drafted the manuscript. AE, MCD, and ZD edited the manuscript. Finally, all authors read and approved final the manuscript.

Corresponding author

Correspondence to Ayşegül Erdoğan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdoğan, A., Karataş, A.B., Demirel, Z. et al. Purification of fucoxanthin from the diatom Amphora capitellata by preparative chromatography after its enhanced productivity via oxidative stress. J Appl Phycol 34, 301–309 (2022). https://doi.org/10.1007/s10811-021-02625-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02625-7

Keywords

Navigation