Skip to main content
Log in

Cross-linked enzyme aggregates (CLEAs) of cellulase with improved catalytic activity, adaptability and reusability

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, cross-linked cellulase aggregates (C-CLEAs) were synthesized by precipitation of cellulase with ammonium sulfate and then cross-linking with glutaraldehyde. The results revealed that the optimal pH of C-CLEAs shifted toward a more acidic environment by 2.0 pH units, and the optimal temperature shifted toward higher temperature by 20 °C after immobilization. The half-life (t1/2) and inactivation energy (Ed) values of the C-CLEAs were 5.98 times and 1.93 times than that of free cellulase, respectively. Moreover, the C-CLEAs can also maintain about 65.22% of activity after 10 cycles and 63.03% of activity after storage for 56 days at 4 °C. Enzymatic hydrolysis of carboxymethylcellulose sodium and corncob in C-CLEAs system verified that the C-CLEAs performed better than free cellulase (P < 0.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu XJ, Luo NC, Xie SJ, Zhang HK, Zhang QH, Wang F, Wang Y (2020) Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem Soc Rev 49(17):6198–6223. https://doi.org/10.1039/D0CS00314J

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Gong XW, Hu XN, Zhou N (2019) Lignin monomer in steam explosion assist chemical treated cotton stalk affects sugar release. Bioresour Technol 276:343–348. https://doi.org/10.1016/j.biortech.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  3. Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani PF, Mohammadi AA (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199:117457. https://doi.org/10.1016/j.energy.2020.117457

    Article  CAS  Google Scholar 

  4. Shimizu FL, Monteiro PQ, Ghiraldi PHC, Melati RB, Pagnocca FC, de Souza W, Sant’Anna C, Brienzo M (2018) Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Ind Crops Prod 115:62–68. https://doi.org/10.1016/j.indcrop.2018.02.024

    Article  CAS  Google Scholar 

  5. Zhang ZY, Vancov T, Mackintosh S, Basu B, Lali A, Qian GR, Hobson P, Doherty WOS (2016) Assessing dilute acid pretreatment of different lignocellulosic biomasses for enhanced sugar production. Cellulose 23(6):3771–3783. https://doi.org/10.1007/s10570-016-1043-6

    Article  CAS  Google Scholar 

  6. Tan XS, Yu Q, Zhao Y, Zhuang XS, Wang Q, Qi W, Zhang Y, Yuan ZH, Wang ZM, Qin YL, Guo Y (2019) Solid base pretreatment to improve the accessibility of lignocellulosic molecules for biomass recovery. Cellulose 26(15):8453–8464. https://doi.org/10.1007/s10570-019-02564-0

    Article  CAS  Google Scholar 

  7. Zhu YT, Liu J, Lv W, Pi QF, Zhang XH, Chen LG, Liu QY, Xu Y, Zhang Q, Ma LL, Wang CG (2020) Revisiting alkaline pretreatment of lignocellulose: understanding the structural evolution of three components. Adv Sustain Syst 4(10):2000067. https://doi.org/10.1002/adsu.202000067

    Article  CAS  Google Scholar 

  8. Jung YH, Park HM, Kim IJ, Park YC, Seo JH, Kim KH (2014) One-pot pretreatment, saccharification and ethanol fermentation of lignocellulose based on acid-base mixture pretreatment. RSC Adv 4(98):55318–55327. https://doi.org/10.1039/c4ra10092a

    Article  CAS  Google Scholar 

  9. Guo B, Zhang YH, Yu G, Lee WH, Jin YS, Morgenroth E (2013) Two-stage acidic-alkaline hydrothermal pretreatment of lignocellulose for the high recovery of cellulose and hemicellulose sugars. Appl Biochem Biotechnol 169(4):1069–1087. https://doi.org/10.1007/s12010-012-0038-5

    Article  CAS  PubMed  Google Scholar 

  10. Lee CBTL, Wu TY (2021) A review on solvent systems for furfural production from lignocellulosic biomass. Renew Sustain Energy Rev 137:110172. https://doi.org/10.1016/j.rser.2020.110172

    Article  CAS  Google Scholar 

  11. Zang LM, Qiu JH, Wu XL, Zhang WJ, Sakai E, Wei Y (2014) Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res 53(9):3448–3454. https://doi.org/10.1021/ie404072s

    Article  CAS  Google Scholar 

  12. Qi BK, Luo JQ, Wan YH (2018) Immobilization of cellulase on a core-shell structured metal-organic framework composites: better inhibitors tolerance and easier recycling. Bioresour Technol 268:577–582. https://doi.org/10.1016/j.biortech.2018.07.115

    Article  CAS  PubMed  Google Scholar 

  13. Xu JL, Huo SH, Yuan ZH, Zhang Y, Xu HJ, Guo Y, Liang CY, Zhuang XS (2011) Characterization of direct cellulase immobilization with superparamagnetic nanoparticle. Biocatal Biotransform 29(2–3):71–76. https://doi.org/10.3109/10242422.2011.566326

    Article  CAS  Google Scholar 

  14. Li L, Xie J, Yu ST, Su ZL, Liu SW, Liu FS, Xie CX, Zhang BQ, Zhang CG (2013) N-terminal PEGylated cellulase: a high stability enzyme in 1-butyl-3-methylimidazolium chloride. Green Chem 15(6):1624–1630. https://doi.org/10.1039/c3gc40104a

    Article  CAS  Google Scholar 

  15. Yu ST, Chen PP, Liu XH, Li L (2015) Degradation of chitosan by modified cellulase in the ionic liquid system. Catal Lett 145(10):1845–1850. https://doi.org/10.1007/s10562-015-1596-2

    Article  CAS  Google Scholar 

  16. Zheng F, Tu T, Wang XY, Wang Y, Ma R, Su XY, Xie XM, Yao B, Luo HY (2018) Enhancing the catalytic activity of a novel GH5 cellulase GtCel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6. Biotechnol Biofuels 11(1):76. https://doi.org/10.1186/s13068-018-1080-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Talekar S, Vijayraghavan R, Arora A, Patti AF (2020) Greener production of low methoxy pectin via recyclable enzymatic de-esterification using pectin methyl esterase cross-linked enzyme aggregates captured from citrus peels. Food Hydrocolloids 108:105786. https://doi.org/10.1016/j.foodhyd.2020.105786

    Article  CAS  Google Scholar 

  18. Rueda N, dos Santos JCS, Ortiz C, Torres R, Barbosa O, Rodrigues RC, Berenguer-Murcia A, Fernandez-Lafuente R (2016) Chemical modification in the design of immobilized enzyme biocatalysts: drawbacks and opportunities. Chem Rec 16(3):1436–1455. https://doi.org/10.1002/tcr.201600007

    Article  CAS  PubMed  Google Scholar 

  19. Li CY, Zhang RH, Wang J, Wilson LM, Yan YJ (2020) Protein engineering for improving and diversifying natural product biosynthesis. Trends Biotechnol 38(7):729–744. https://doi.org/10.1016/j.tibtech.2019.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carceller JM, Galan JPM, Monti R, Bassan JC, Filice M, Iborra S, Yu JH, Corma A (2019) Selective synthesis of citrus flavonoids prunin and naringenin using heterogenized biocatalyst on graphene oxide. Green Chem 21(4):839–849. https://doi.org/10.1039/c8gc03661f

    Article  CAS  Google Scholar 

  21. Rehman S, Bhatti HN, Bilal M, Asgher M (2016) Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. Int J Biol Macromol 91:1161–1169. https://doi.org/10.1016/j.ijbiomac.2016.06.081

    Article  CAS  PubMed  Google Scholar 

  22. Abd Rahman NH, Jaafar NR, Murad AMA, Abu Bakar FD, Annuar NAS, Illias RM (2020) Novel cross-linked enzyme aggregates of levanase from Bacillus lehensis G1 for short-chain fructooligosaccharides synthesis: developmental, physicochemical, kinetic and thermodynamic properties. Int J Biol Macromol 159:577–589. https://doi.org/10.1016/j.ijbiomac.2020.04.262

    Article  CAS  PubMed  Google Scholar 

  23. Sellami K, Couvert A, Nasrallah N, Maachi R, Tandjaoui N, Abouseoud M, Amrane A (2021) Bio-based and cost effective method for phenolic compounds removal using cross-linked enzyme aggregates. J Hazard Mater 403:124021. https://doi.org/10.1016/j.jhazmat.2020.124021

    Article  CAS  PubMed  Google Scholar 

  24. Bian HJ, Cao MF, Wen H, Tan ZL, Jia SR, Cui JD (2019) Biodegradation of polyvinyl alcohol using cross-linked enzyme aggregates of degrading enzymes from Bacillus niacini. Int J Biol Macromol 124:10–16. https://doi.org/10.1016/j.ijbiomac.2018.11.204

    Article  CAS  PubMed  Google Scholar 

  25. Hero JS, Romero CM, Pisa JH, Perotti NI, Olivaro C, Martinez MA (2018) Designing cross-linked xylanase aggregates for bioconversion of agroindustrial waste biomass towards potential production of nutraceuticals. Int J Biol Macromol 111:229–236. https://doi.org/10.1016/j.ijbiomac.2017.12.166

    Article  CAS  PubMed  Google Scholar 

  26. Kulkarni NH, Muley AB, Bedade DK, Singhal RS (2020) Cross-linked enzyme aggregates of arylamidase from Cupriavidus oxalaticus ICTDB921: process optimization, characterization, and application for mitigation of acrylamide in industrial wastewater. Bioprocess Biosyst Eng 43(3):457–471. https://doi.org/10.1007/s00449-019-02240-4

    Article  CAS  PubMed  Google Scholar 

  27. Kannan S, Marudhamuthu M (2019) Development of chitin cross-linked enzyme aggregates of L-methioninase for upgraded activity, permanence and application as efficient therapeutic formulations. Int J Biol Macromol 141:218–231. https://doi.org/10.1016/j.ijbiomac.2019.08.246

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Yang JY, Wang K, Duan FY, Lu LL (2021) Carrier-free immobilization of α-galactosidase as nano-biocatalysts for synthesizing prebiotic α-galacto-oligosaccharides. Molecules 26(5):1248. https://doi.org/10.3390/molecules26051248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahmed IN, Yang XL, Dubale AA, Li RF, Ma YM, Wang LM, Hou GH, Guan RF, Xie MH (2018) Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium-based metal-organic frameworks. Bioresour Technol 270:377–382. https://doi.org/10.1016/j.biortech.2018.09.077

    Article  CAS  PubMed  Google Scholar 

  30. Li B, Dong SL, Xie XL, Xu ZB, Li L (2012) Preparation and properties of cross-linked enzyme aggregates of cellulase. Adv Mater Res 581–582:257–260. https://doi.org/10.4028/www.scientific.net/AMR.581-582.257

    Article  CAS  Google Scholar 

  31. Talekar S, Pandharbale A, Ladole M, Nadar S, Mulla M, Japhalekar K, Pattankude K, Arage D (2013) Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour Technol 147:269–275. https://doi.org/10.1016/j.biortech.2013.08.035

    Article  CAS  PubMed  Google Scholar 

  32. Ullah H, Pervez S, Ahmed S, Haleem KS, Tauseef I (2021) Preparation, characterization and stability studies of cross-linked α-amylase aggregates (CLAAs) for continuous liquefaction of starch. Int J Biol Macromol 173:267–276. https://doi.org/10.1016/j.ijbiomac.2021.01.057

    Article  CAS  PubMed  Google Scholar 

  33. Parveen S, Asgher M, Bilal M (2020) Lignin peroxidase-based cross-linked enzyme aggregates (LiP-CLEAs) as robust biocatalytic materials for mitigation of textile dyes-contaminated aqueous solution. Environ Technol Innovation 21:101226. https://doi.org/10.1016/j.eti.2020.101226

    Article  CAS  Google Scholar 

  34. Pervez S, Nawaz MA, Shahid F, Aman A, Tauseef I, Ul Qader SA (2019) Characterization of cross-linked amyloglucosidase aggregates from aspergillus fumigatus KIBGE-IB33 for continuous production of glucose. Int J Biol Macromol 135:1252–1260. https://doi.org/10.1016/j.ijbiomac.2018.11.097

    Article  CAS  PubMed  Google Scholar 

  35. Sadeghzadeh S, Nejad ZG, Ghasemi S, Khafaji M, Borghei SM (2020) Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsute. Bioresour Technol 306:123169. https://doi.org/10.1016/j.biortech.2020.123169

    Article  CAS  PubMed  Google Scholar 

  36. Bindu VU, Mohanan PV (2020) Thermal deactivation of α-amylase immobilized magnetic chitosan and its modified forms: a kinetic and thermodynamic study. Carbohydr Res 498:108185. https://doi.org/10.1016/j.carres.2020.108185

    Article  CAS  PubMed  Google Scholar 

  37. Wang SG, Zheng DB, Yin LY, Wang F (2017) Preparation, activity and structure of cross-linked enzyme aggregates (CLEAs) with nanoparticle. Enzyme Microb Technol 107:22–31. https://doi.org/10.1016/j.enzmictec.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  38. Nadar SS, Muley AB, Ladole MR, Joshi PU (2016) Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase. Int J Biol Macromol 84:69–78. https://doi.org/10.1016/j.ijbiomac.2015.11.082

    Article  CAS  PubMed  Google Scholar 

  39. Qian JQ, Zhao CY, Ding J, Chen Y, Guo H (2020) Preparation of nano-enzyme aggregates by crosslinking lipase with sodium tripolyphosphate. Process Biochem 97:19–26. https://doi.org/10.1016/j.procbio.2020.06.026

    Article  CAS  Google Scholar 

  40. Deng X, He T, Li J, Duan HL, Zhang ZQ (2020) Enhanced biochemical characteristics of β-glucosidase via adsorption and cross-linked enzyme aggregate for rapid cellobiose hydrolysis. Bioprocess Biosyst Eng 43:2209–2217. https://doi.org/10.1007/s00449-020-02406-5

    Article  CAS  PubMed  Google Scholar 

  41. Wang DQ, Zheng P, Chen PC, Wu D (2021) Immobilization of alpha-L-rhamnosidase on a magnetic metal-organic framework to effectively improve its reusability in the hydrolysis of rutin. Bioresour Technol 323:124611. https://doi.org/10.1016/j.biortech.2020.124611

    Article  CAS  PubMed  Google Scholar 

  42. Xu MQ, Li FL, Yu WQ, Li RF, Zhang YW (2020) Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD+ regeneration. Int J Biol Macromol 144:1013–1021. https://doi.org/10.1016/j.ijbiomac.2019.09.178

    Article  CAS  PubMed  Google Scholar 

  43. Aytar BS, Bakir U (2008) Preparation of cross-linked tyrosinase aggregates. Process Biochem 43(2):125–131. https://doi.org/10.1016/j.procbio.2007.11.001

    Article  CAS  Google Scholar 

  44. Wang Y, Feng CY, Guo RX, Ma YF, Yuan Y, Liu YP (2021) Cellulase immobilized by sodium alginate-polyethylene glycol-chitosan for hydrolysis enhancement of microcrystalline cellulose. Process Biochem 107:38–47. https://doi.org/10.1016/j.procbio.2021.02.018

    Article  CAS  Google Scholar 

  45. Zhu Y, Han J, Wu JC, Li YY, Wang L, Mao YL, Wang Y (2021) A two-step method for the synthesis of magnetic immobilized cellulase with outstanding thermal stability and reusability. New J Chem 45(13):6144–6150. https://doi.org/10.1039/d0nj06037b

    Article  CAS  Google Scholar 

  46. Duman YA, Tufan G, Kaya AU (2020) Immobilization of cellulase on vermiculite and the effects on enzymatic kinetics and thermodynamics. Appl Clay Sci 197:105792. https://doi.org/10.1016/j.clay.2020.105792

    Article  CAS  Google Scholar 

  47. Mortazavi S, Aghaei H (2020) Make proper surfaces for immobilization of enzymes: Immobilization of lipase and α-amylase on modified na-sepiolite. Int J Biol Macromol 164:1–12. https://doi.org/10.1016/j.ijbiomac.2020.07.103

    Article  CAS  PubMed  Google Scholar 

  48. Muley AB, Awasthi S, Bhalerao PP, Jadhav NL, Singhal RS (2021) Preparation of cross-linked enzyme aggregates of lipase from Aspergillus niger: process optimization, characterization, stability, and application for epoxidation of lemongrass oil. Bioprocess Biosyst Eng 44(7):1383–1404. https://doi.org/10.1007/s00449-021-02509-7

    Article  CAS  PubMed  Google Scholar 

  49. Zhang YB, Hu P, Muhammad Y, Tang Y, Shao S, Gao Z, Wang JX, Wang RM, Hu Y, Kuang LH, Zhao ZX, Zhao ZX (2021) High-density immobilization of laccase on hollow nano-sphere NH2-MIL88 (Fe) host with interfacial defects to improve enzyme activity and stability for remazol brilliant blue R decolorization. Chem Eng J 405:127003. https://doi.org/10.1016/j.cej.2020.127003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support provided by National Natural Science Foundation of China (Grant no. 21464011) and General Science and Technology Project of “Double First Class University Plan” Construction of Shihezi University (SHYL-DK201803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowu Gong or Na Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Gong, X., Yang, G. et al. Cross-linked enzyme aggregates (CLEAs) of cellulase with improved catalytic activity, adaptability and reusability. Bioprocess Biosyst Eng 45, 865–875 (2022). https://doi.org/10.1007/s00449-022-02704-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02704-0

Keywords

Navigation