Skip to main content

Cross-linked Enzyme Aggregates: Current Developments and Applications

  • Chapter
  • First Online:
Biocatalysis

Abstract

Enhanced performance of enzyme is the major challenge which restricts their applications in industrial processes. Different strategies have been proposed to increase their lifetime/performance, they are (1) isolation of novel enzymes which can function under extreme conditions, (2) modifications of enzyme structure to increase their resistance i.e. protein engineering and (3) modification of the solvent environment. However, immobilization, an old technique is still considered as a very powerful tool to improve enzyme properties. In this review, we are presenting a detailed discourse of cross-linked enzyme aggregate (CLEA), as a new method of immobilization. CLEA technology involves precipitation of enzymes using organic solvents followed by cross-linking the precipitated enzymes using a crosslinker. Several additives like starch, bovine serum albumin and polyamines are used to provide additional cross-linking sites for better stability. An appropriate precipitant is required for CLEA formation for a selected enzyme, therefore screening of precipitant is needed which depends on the nature of the enzymes. Optimization of organic solvents, cross-linking concentration and incubation time is a must for optimum performance of CLEA. It shows high stability, reusability and acts as a better catalyst in terms of performance. Furthermore, this technology can be used for the preparation of combi-CLEA using two or more enzymes. It can be a great tool for stabilizing enzymes to improve their overall performance which can be exploited in industries for chemical transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahumada K, Urrutia P, Illanes A, Wilson L (2015) Production of combi-CLEAs of glycosidases utilized for aroma enhancement in wine. Food Bioprod Process 94:555–560

    Article  CAS  Google Scholar 

  • Amotz S (1987) Method for production of an immobilized enzyme preparation by means of a crosslinking agent. Google Patents

    Google Scholar 

  • Arsenault A, Cabana H, Jones JP (2011) Laccase-based CLEAs: chitosan as a novel cross-linking agent. Enzyme Res 2011:1–10

    Article  CAS  Google Scholar 

  • Aytar BS, Bakir U (2008) Preparation of cross-linked tyrosinase aggregates. Process Biochem 43:125–131

    Article  CAS  Google Scholar 

  • Barbosa O, Ortiz C, Berenguer-Murcia A, Torres R, Rodrigues RC, Fernandez-Lafuente R (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4:1583–1600

    Article  CAS  Google Scholar 

  • Bhattacharya A, Pletschke BI (2014) Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes. Enzym Microb Technol 61:17–27

    Article  CAS  Google Scholar 

  • Bilal M, Iqbal HM, Hu H, Wang W, Zhang X (2017) Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. J Environ Manag 188:137–143

    Article  CAS  Google Scholar 

  • Bode ML, van Rantwijk F, Sheldon RA (2003) Crude aminoacylase from Aspergillus sp. is a mixture of hydrolases. Biotechnol Bioeng 84:710–713

    Article  CAS  PubMed  Google Scholar 

  • Boller T, Meier C, Menzler S (2002) EUPERGIT oxirane acrylic beads: how to make enzymes fit for biocatalysis. Org Process Res Dev 6:509–519

    Article  CAS  Google Scholar 

  • Brady D, Steenkamp L, Skein E, Chaplin JA, Reddy S (2004) Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC-CR. Enzym Microb Technol 34:283–291

    Article  CAS  Google Scholar 

  • Brena BM, Batista-Viera F (2006) Immobilization of enzymes. In: Guisan JM (ed) Immobilization of enzymes and cells, vol 22. Springer, Totowa, NJ, pp 15–30

    Chapter  Google Scholar 

  • Brena B, González-Pombo P, Batista-Viera F (2013) Immobilization of enzymes: a literature survey. In: Guisan JM (ed) Immobilization of enzymes and cells, vol 1051. Springer, Totowa, NJ, pp 15–31

    Chapter  Google Scholar 

  • Cabana H, Jones JP, Agathos SN (2007) Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals. J Biotechnol 132:23–31

    Article  CAS  PubMed  Google Scholar 

  • Cao L (2006) Carrier-bound immobilized enzymes: principles, application and design. Wiley, Weinheim

    Google Scholar 

  • Cao L, Van Langen L, Janssen M, Sheldon R (1999) Preparation and properties of cross-linked aggregates of penicillin acylase and other enzymes. European Patent Application number EP1088887A1

    Google Scholar 

  • Cao L, van Rantwijk F, Sheldon RA (2000) Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett 2:1361–1364

    Article  CAS  PubMed  Google Scholar 

  • Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Wang Y, Liu W, Wang J, Chen H (2017) A novel cross-linked enzyme aggregates (CLEAs) of papain and neutrase-production, partial characterization and application. Int J Biol Macromol 95:650–657

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Izquierdo A, Pico EA, Lopez C, Serra JL, Llama MJ (2014) Magnetic cross-linked enzyme aggregates (mCLEAs) of Candida antarctica lipase: an efficient and stable biocatalyst for biodiesel synthesis. PLoS One 9:e115202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui JD, Jia SR (2015) Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Crit Rev Biotechnol 35:15–28

    Article  CAS  PubMed  Google Scholar 

  • Dal Magro L, Hertz PF, Fernandez-Lafuente R, Klein MP, Rodrigues RC (2016) Preparation and characterization of a Combi-CLEAs from pectinases and cellulases: a potential biocatalyst for grape juice clarification. RSC Adv 6:27242–27251

    Article  CAS  Google Scholar 

  • Dalal S, Kapoor M, Gupta MN (2007a) Preparation and characterization of combi-CLEAs catalyzing multiple non-cascade reactions. J Mol Catal B Enzym 44:128–132

    Article  CAS  Google Scholar 

  • Dalal S, Sharma A, Gupta MN (2007b) A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities. Chem Cent J 1:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong Cui J, Li Cui L, Ping Zhang S, Fei Zhang Y, Guo Su Z, Hui Ma G (2014) Hybrid magnetic cross-linked enzyme aggregates of phenylalanine ammonia lyase from Rhodotorula glutinis. PLoS One 9:e97221

    Article  CAS  Google Scholar 

  • Easa MNB, Yusof FB (2006) Optimizing the preparation of Cross-Linked Enzyme Aggregates (Clea)-Amylase from supermeal worm (Zophobas morio). ARPN J Eng Appl Sci 10:9710–9716

    Google Scholar 

  • Fazary AE, Ismadji S, Ju Y-H (2009) Biochemical studies on native and cross-linked aggregates of Aspergillus awamori feruloyl esterase. Int J Biol Macromol 44:240–248

    Article  CAS  PubMed  Google Scholar 

  • Gaur R, Pant H, Jain R, Khare S (2006) Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chem 97:426–430

    Article  CAS  Google Scholar 

  • Gogoi P, Hazarika S, Dutta NN, Rao PG (2010) Kinetics and mechanism on laccase catalyzed synthesis of poly (allylamine)–catechin conjugate. Chem Eng J 163:86–92

    Article  CAS  Google Scholar 

  • Grateron C, Barbosa O, Rueda N, Ortiz-Lopez C, Torres R (2007) Azo dye decolorization by optimized cross linked enzyme aggregates (CLEAs) of a royal palm (Roystonea regia) peroxidase. J Biotechnol 2:S87

    Article  Google Scholar 

  • Guo J, Ge L, Li X, Mu C, Li D (2014) Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocoll 39:243–250

    Article  CAS  Google Scholar 

  • Gupta P, Dutt K, Misra S, Raghuwanshi S, Saxena R (2009) Characterization of cross-linked immobilized lipase from thermophilic mould Thermomyces lanuginosa using glutaraldehyde. Bioresour Technol 100:4074–4076

    Article  CAS  PubMed  Google Scholar 

  • Haider T, Husain Q (2007) An inexpensive and highly stable calcium alginate entrapped preparation of Aspergillus oryzae β galactosidase. Int J Biol Macromol 41(1):72–80

    Article  CAS  PubMed  Google Scholar 

  • Haider T, Husain Q (2008) Concanavalin A layered calcium alginate-starch beads immobilized β galactosidase as a therapeutic agent for lactose intolerant patients. Int J Pharm 359(1–2):1–6

    Article  CAS  PubMed  Google Scholar 

  • Haring D, Schreier P (1999) Cross-linked enzyme crystals. Curr Opin Chem Biol 3:35–38

    Article  CAS  PubMed  Google Scholar 

  • Hickey AM, Ngamsom B, Wiles C, Greenway GM, Watts P, Littlechild JA (2009) A microreactor for the study of biotransformations by a cross-linked γ-lactamase enzyme. Biotechnol J 4:510–516

    Article  CAS  PubMed  Google Scholar 

  • Hobbs HR, Kondor B, Stephenson P, Sheldon RA, Thomas NR, Poliakoff M (2006) Continuous kinetic resolution catalysed by cross-linked enzyme aggregates, ‘CLEAs’, in supercritical CO2. Green Chem 8:816–821

    Article  CAS  Google Scholar 

  • Honda T, Miyazaki M, Nakamura H, Maeda H (2006) Facile preparation of an enzyme-immobilized microreactor using a cross-linking enzyme membrane on a microchannel surface. Adv Synth Catal 348:2163–2171

    Article  CAS  Google Scholar 

  • Hormigo D, García-Hidalgo J, Acebal C, de la Mata I, Arroyo M (2012) Preparation and characterization of cross-linked enzyme aggregates (CLEAs) of recombinant poly-3-hydroxybutyrate depolymerase from Streptomyces exfoliatus. Bioresour Technol 115:177–182

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Pan J, Yu H-L, Liu J-W, Xu J-H (2009) Immobilization of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of Diltiazem intermediate. Process Biochem 44:1019–1024

    Article  CAS  Google Scholar 

  • Husain Q (2010) β Galactosidases and their potential applications: a review. Crit Rev Biotechnol 30(1):41–62

    Article  CAS  PubMed  Google Scholar 

  • Husain Q (2016) Magnetic nanoparticles as a tool for the immobilization/stabilization of hydrolases and their applications: an overview. Biointerf Res Appl Chem 6(6):1585–1606

    CAS  Google Scholar 

  • Husain Q (2017a) Nanomaterials as novel supports for the immobilization of amylolytic enzymes and their applications: a review. Biocatalysis 3:37–53

    Article  Google Scholar 

  • Husain Q (2017b) Nanomaterials immobilized cellulolytic enzymes and their industrial applications. JSM Biochem Mol Biol 4:1029

    Google Scholar 

  • Husain Q, Husain M (2012) Peroxidases as a potential tool for the decolorization and removal of synthetic dyes from polluted water. In: Malik A, Grohmann E (eds) Environmental protection strategies for sustainable development. Springer, Berlin, pp 453–498

    Chapter  Google Scholar 

  • Husain Q, Ulber R (2011) Immobilized peroxidase as a valuable tool in the remediation of aromatic pollutants and xenobiotic compounds: a review. Crit Rev Environ Sci Technol 41(8):770–804

    Article  CAS  Google Scholar 

  • Jafari Khorshidi K, Lenjannezhadian H, Jamalan M, Zeinali M (2016) Preparation and characterization of nanomagnetic cross-linked cellulase aggregates for cellulose bioconversion. J Chem Technol Biotechnol 91:539–546

    Article  CAS  Google Scholar 

  • Jiang Y, Shi L, Huang Y, Gao J, Zhang X, Zhou L (2014) Preparation of robust biocatalyst based on cross-linked enzyme aggregates entrapped in three-dimensionally ordered macroporous silica. ACS Appl Mater Interfaces 6:2622–2628

    Article  CAS  PubMed  Google Scholar 

  • Ju H, Jang E, Ryu BH, Kim TD (2013) Characterization and preparation of highly stable aggregates of a novel type of hydrolase (BL28) from Bacillus licheniformis. Bioresour Technol 128:81–86

    Article  CAS  PubMed  Google Scholar 

  • Jung D-H, Jung J-H, Seo D-H, Ha S-J, Kweon D-K, Park C-S (2013) One-pot bioconversion of sucrose to trehalose using enzymatic sequential reactions in combined cross-linked enzyme aggregates. Bioresour Technol 130:801–804

    Article  CAS  PubMed  Google Scholar 

  • Karimi M (2016) Immobilization of lipase onto mesoporous magnetic nanoparticles for enzymatic synthesis of biodiesel. Biocatal Agric Biotechnol 8:182–188

    Article  Google Scholar 

  • Karimpil JJ, Melo J, D’Souza S (2011) Hen egg white as a feeder protein for lipase immobilization. J Mol Catal B Enzym 71:113–118

    Article  CAS  Google Scholar 

  • Kartal F, Janssen MH, Hollmann F, Sheldon RA, Kılınc A (2011) Improved esterification activity of Candida rugosa lipase in organic solvent by immobilization as cross-linked enzyme aggregates (CLEAs). J Mol Catal B Enzym 71:85–89

    Article  CAS  Google Scholar 

  • Kim M et al (2010) Immobilization of cross-linked lipase aggregates onto magnetic beads for enzymatic degradation of polycaprolactone. J Basic Microbiol 50:218–226

    Article  CAS  PubMed  Google Scholar 

  • Kulshrestha Y, Husain Q (2006) Adsorption of peroxidases on DEAE-cellulose directly from ammonium sulphate fractionated proteins of bitter gourd. Enzym Microb Technol 38:470–477

    Article  CAS  Google Scholar 

  • Kulshrestha Y, Husain Q (2007) Decolorization and degradation of acid dyes mediated by salt fractionated turnip (Brassica rapa) peroxidases. Toxicol Environ Chem 89:255–267

    Article  CAS  Google Scholar 

  • Kumar VV, Kumar MP, Thiruvenkadaravi K, Baskaralingam P, Kumar PS, Sivanesan S (2012) Preparation and characterization of porous cross linked laccase aggregates for the decolorization of triphenyl methane and reactive dyes. Bioresour Technol 119:28–34

    Article  CAS  Google Scholar 

  • Kumar VV, Sivanesan S, Cabana H (2014) Magnetic cross-linked laccase aggregates—bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci Total Environ 487:830–839

    Article  CAS  PubMed  Google Scholar 

  • Kumari V, Shah S, Gupta MN (2007) Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energy Fuel 21:368–372

    Article  CAS  Google Scholar 

  • Lai J-Q, Hu Z-L, Sheldon RA, Yang Z (2012) Catalytic performance of cross-linked enzyme aggregates of Penicillium expansum lipase and their use as catalyst for biodiesel production. Process Biochem 47:2058–2063

    Article  CAS  Google Scholar 

  • Lanfranchi E et al (2018) Production of hydroxynitrile lyase from Davallia tyermannii (DtHNL) in Komagataella phaffii and its immobilization as a CLEA to generate a robust biocatalyst. ChemBioChem 19:312–316

    Article  CAS  PubMed  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  PubMed  Google Scholar 

  • Li S, Su Y, Liu Y, Sun L, Yu M, Wu Y (2016) Preparation and characterization of cross-linked enzyme aggregates (CLEAs) of recombinant thermostable alkylsulfatase (SdsAP) from Pseudomonas sp. S9. Process Biochem 51:2084–2089

    Article  CAS  Google Scholar 

  • Lopez-Gallego F, Betancor L, Hidalgo A, Alonso N, Fernandez-Lafuente R, Guisan JM (2005) Co-aggregation of enzymes and polyethyleneimine: a simple method to prepare stable and immobilized derivatives of glutaryl acylase. Biomacromolecules 6:1839–1842

    Article  CAS  PubMed  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  • Majumder AB, Mondal K, Singh TP, Gupta MN (2008) Designing cross-linked lipase aggregates for optimum performance as biocatalysts. Biocatal Biotransformation 26:235–242

    Article  CAS  Google Scholar 

  • Margolin AL, Navia MA (2001) Protein crystals as novel catalytic materials. Angew Chem Int Ed 40:2204–2222

    Article  CAS  Google Scholar 

  • Mateo C, Palomo JM, Van Langen LM, Van Rantwijk F, Sheldon RA (2004) A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng 86:273–276

    Article  CAS  PubMed  Google Scholar 

  • Mateo C et al (2007a) Advances in the design of new epoxy supports for enzyme immobilization–stabilization. Biochem Soc Trans 35:1593–1601

    Article  CAS  PubMed  Google Scholar 

  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007b) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  • Matsumoto M, Ohashi K (2003) Effect of immobilization on thermostability of lipase from Candida rugosa. Biochem Eng J 14:75–77

    Article  CAS  Google Scholar 

  • Matto M, Husain Q (2009) A novel calcium alginate-starch hybrid support for both surface immobilization and entrapment of bitter gourd (Momordica charantia) peroxidase. J Mol Catal B Enzym 57(1–4):164–170

    Article  CAS  Google Scholar 

  • Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques 37:790–802

    Article  CAS  PubMed  Google Scholar 

  • Mishra VK, Goswami R (2018) A review of production, properties and advantages of biodiesel. Biofuels 9:273–289

    Article  CAS  Google Scholar 

  • Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29:205–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montoro-García S, Gil-Ortiz F, Navarro-Fernandez J, Rubio V, García-Carmona F, Sanchez-Ferrer A (2010) Improved cross-linked enzyme aggregates for the production of desacetyl β-lactam antibiotics intermediates. Bioresour Technol 101:331–336

    Article  PubMed  CAS  Google Scholar 

  • Musthapa S, Akhtar S, Khan AA, Husain Q (2004) An economical, simple and high yield procedure for the immobilization/stabilization of peroxidases from turnip roots. J Sci Ind Res 63:540–547

    Google Scholar 

  • Nadar SS, Rathod VK (2016) Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase. Enzym Microb Technol 83:78–87

    Article  CAS  Google Scholar 

  • Nadar SS, Muley AB, Ladole MR, Joshi PU (2016) Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase. Int J Biol Macromol 84:69–78

    Article  CAS  PubMed  Google Scholar 

  • Netto CG, Toma HE, Andrade LH (2013) Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B Enzym 85:71–92

    Article  CAS  Google Scholar 

  • Nuijens T, Cusan C, Kruijtzer JA, Rijkers DT, Liskamp RM, Quaedflieg PJ (2009a) Enzymatic synthesis of C-terminal arylamides of amino acids and peptides. J Org Chem 74:5145–5150

    Article  CAS  PubMed  Google Scholar 

  • Nuijens T, Kruijtzer JA, Cusan C, Rijkers DT, Liskamp RM, Quaedflieg PJ (2009b) A versatile and selective chemo-enzymatic synthesis of β-protected aspartic and γ-protected glutamic acid derivatives. Tetrahedron Lett 50:2719–2721

    Article  CAS  Google Scholar 

  • Nuijens T, Cusan C, Schepers AC, Kruijtzer JA, Rijkers DT, Liskamp RM, Quaedflieg PJ (2011) Enzymatic synthesis of activated esters and their subsequent use in enzyme-based peptide synthesis. J Mol Catal B Enzym 71:79–84

    Article  CAS  Google Scholar 

  • Ortiz-Soto ME, Rudino-Pinera E, Rodriguez-Alegria ME, Munguia AL (2009) Evaluation of cross-linked aggregates from purified Bacillus subtilis levansucrase mutants for transfructosylation reactions. BMC Biotechnol 9:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park HJ, Uhm K-N, Kim H-K (2010) Biotransformation of amides to acids using a co-cross-linked enzyme aggregate of Rhodococcus erythropolis amidase. J Microbiol Biotechnol 20:325–331

    Article  CAS  PubMed  Google Scholar 

  • Pchelintsev N, Youshko M, Svedas V (2009) Quantitative characteristic of the catalytic properties and microstructure of cross-linked enzyme aggregates of penicillin acylase. J Mol Catal B Enzym 56:202–207

    Article  CAS  Google Scholar 

  • Perwez M, Ahmad R, Sardar M (2017) A reusable multipurpose magnetic nanobiocatalyst for industrial applications. Int J Biol Macromol 103:16–24

    Article  CAS  PubMed  Google Scholar 

  • Prabhavathi Devi B, Guo Z, Xu X (2009) Characterization of cross-linked lipase aggregates. J Am Oil Chem Soc 86:637–642

    Article  CAS  Google Scholar 

  • Quiocho FA, Richards FM (1964) Intermolecular cross linking of a protein in the crystalline state: carboxypeptidase. Proc Natl Acad Sci 52:833–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quiocho FA, Richards FM (1966) The enzymic behavior of carboxypeptidase-A in the solid state. Biochemistry 5:4062–4076

    Article  CAS  Google Scholar 

  • Rehman S, Bhatti HN, Bilal M, Asgher M (2016) Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. Int J Biol Macromol 91:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Reshmi R, Sugunan S (2013) Improved biochemical characteristics of crosslinked β-glucosidase on nanoporous silica foams. J Mol Catal B Enzym 85:111–118

    Google Scholar 

  • Roberge C, Amos D, Pollard D, Devine P (2009) Preparation and application of cross-linked aggregates of chloroperoxidase with enhanced hydrogen peroxide tolerance. J Mol Catal B Enzym 56:41–45

    Article  CAS  Google Scholar 

  • Roessl U, Nahálka J, Nidetzky B (2010) Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett 32:341–350

    Article  CAS  PubMed  Google Scholar 

  • Sangeetha K, Abraham TE (2008) Preparation and characterization of cross-linked enzyme aggregates (CLEA) of subtilisin for controlled release applications. Int J Biol Macromol 43:314–319

    Article  CAS  PubMed  Google Scholar 

  • Satar R, Husain Q (2009) Adsorption of peroxidase on Celite 545 directly from ammonium sulphate fractionated white radish (Raphanus sativus) proteins. Biotechnol J 4:408–416

    Article  CAS  PubMed  Google Scholar 

  • Satar R, Jerah AAB, Husain Q (2012) Role of redox mediators in enhancing the decolorization and remediation of textile dyes by enzymes. In: Textiles: types, uses and production methods. Nova Science, New York

    Google Scholar 

  • Schoevaart R et al (2004) Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng 87:754–762

    Article  CAS  PubMed  Google Scholar 

  • Seow N, Yang K-L (2017) Hollow cross-linked enzyme aggregates (h-CLEA) of laccase with high uniformity and activity. Colloids Surf B: Biointerfaces 151:88–94

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Sharma A, Gupta MN (2006) Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Anal Biochem 351:207–213

    Article  CAS  PubMed  Google Scholar 

  • Sheldon R (2007a) Cross-linked enzyme aggregates (CLEA® s): stable and recyclable biocatalysts. Biochem Soc Trans 35:1583–1587

    Article  CAS  PubMed  Google Scholar 

  • Sheldon RA (2007b) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  • Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    Article  CAS  PubMed  Google Scholar 

  • Sheldon R, Schoevaart R, Van Langen L (2005) Cross-linked enzyme aggregates (CLEAs): a novel and versatile method for enzyme immobilization (a review). Biocatal Biotransformation 23:141–147

    Article  CAS  Google Scholar 

  • Sinirlioglu ZA, Sinirlioglu D, Akbas F (2013) Preparation and characterization of stable cross-linked enzyme aggregates of novel laccase enzyme from Shewanella putrefaciens and using malachite green decolorization. Bioresour Technol 146:807–811

    Article  CAS  PubMed  Google Scholar 

  • Stavila E, Alberda van Ekenstein G, Loos K (2013) Enzyme-catalyzed synthesis of aliphatic–aromatic oligoamides. Biomacromolecules 14:1600–1606

    Article  CAS  PubMed  Google Scholar 

  • Å ulek F, Fernandez DP, Knez Z, Habulin M, Sheldon RA (2011) Immobilization of horseradish peroxidase as crosslinked enzyme aggregates (CLEAs). Process Biochem 46:765–769

    Article  CAS  Google Scholar 

  • Taboada-Puig R, Junghanns C, Demarche P, Moreira M, Feijoo G, Lema J, Agathos SN (2011) Combined cross-linked enzyme aggregates from versatile peroxidase and glucose oxidase: production, partial characterization and application for the elimination of endocrine disruptors. Bioresour Technol 102:6593–6599

    Article  CAS  PubMed  Google Scholar 

  • Takkinen K, Pettersson RF, Kalkkinen N, Palva I, Soderlund H, Kaariainen L (1983) Amino acid sequence of alpha-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. J Biol Chem 258:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Talekar S, Ghodake V, Kate A, Samant N, Kumar C, Gadagkar S (2010) Preparation and characterization of cross-linked enzyme aggregates of Saccharomyces cerevisiae invertase. Aust J Basic Appl Sci 4:4760–4765

    CAS  Google Scholar 

  • Talekar S et al (2012a) Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase. Bioresour Technol 123:542–547

    Article  CAS  PubMed  Google Scholar 

  • Talekar S, Shah V, Patil S, Nimbalkar M (2012b) Porous cross linked enzyme aggregates (p-CLEAs) of Saccharomyces cerevisiae invertase. Cat Sci Technol 2:1575–1579

    Article  CAS  Google Scholar 

  • Talekar S, Waingade S, Gaikwad V, Patil S, Nagavekar N (2012c) Preparation and characterization of cross linked enzyme aggregates (CLEAs) of Bacillus amyloliquefaciens alpha amylase. J Biochem Technol 3:349–353

    CAS  Google Scholar 

  • Talekar S et al (2013a) Carrier free co-immobilization of glucoamylase and pullulanase as combi-cross linked enzyme aggregates (combi-CLEAs). RSC Adv 3:2265–2271

    Article  CAS  Google Scholar 

  • Talekar S, Joshi A, Joshi G, Kamat P, Haripurkar R, Kambale S (2013b) Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Adv 3:12485–12511

    Article  CAS  Google Scholar 

  • Talekar S et al (2014) Preparation of stable cross-linked enzyme aggregates (CLEAs) of NADH-dependent nitrate reductase and its use for silver nanoparticle synthesis from silver nitrate. Catal Commun 53:62–66

    Article  CAS  Google Scholar 

  • Talekar S, Joshi A, Chougle R, Nakhe A, Bhojwani R (2016) Immobilized enzyme mediated synthesis of silver nanoparticles using cross-linked enzyme aggregates (CLEAs) of NADH-dependent nitrate reductase. Nano Struct Nano Obj 6:23–33

    Article  CAS  Google Scholar 

  • Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. In: Fessner W-D (ed) Biocatalysis-from discovery to application, vol 200. Springer, Berlin, pp 95–126

    Chapter  Google Scholar 

  • Topcular C, Ayhan H (2008) Carrier free cross-linked peroxidase aggregates: synthesis and characterization hacettepe. J Biol Chem 36:255–261

    Google Scholar 

  • Toral AR, Antonia P, Hernandez FJ, Janssen MH, Schoevaart R, van Rantwijk F, Sheldon RA (2007) Cross-linked Candida antarctica lipase B is active in denaturing ionic liquids. Enzym Microb Technol 40:1095–1099

    Article  CAS  Google Scholar 

  • Torres MG, Foresti M, Ferreira M (2014) CLEAs of Candida antarctica lipase B (CALB) with a bovine serum albumin (BSA) cofeeder core: study of their catalytic activity. Biochem Eng J 90:36–43

    Article  CAS  Google Scholar 

  • Tudorache M, Nae A, Coman S, Parvulescu VI (2013) Strategy of cross-linked enzyme aggregates onto magnetic particles adapted to the green design of biocatalytic synthesis of glycerol carbonate. RSC Adv 3:4052–4058

    Article  CAS  Google Scholar 

  • Vafiadi C, Topakas E, Christakopoulos P (2008) Preparation of multipurpose cross-linked enzyme aggregates and their application to production of alkyl ferulates. J Mol Catal B Enzym 54:35–41

    Article  CAS  Google Scholar 

  • Vaidya BK, Kuwar SS, Golegaonkar SB, Nene SN (2012) Preparation of cross-linked enzyme aggregates of l-aminoacylase via co-aggregation with polyethyleneimine. J Mol Catal B Enzym 74:184–191

    Article  CAS  Google Scholar 

  • van Rantwijk F, Sheldon RA (2004) Enantioselective acylation of chiral amines catalysed by serine hydrolases. Tetrahedron 60:501–519

    Article  CAS  Google Scholar 

  • Velasco-Lozano S, Lopez-Gallego F, Mateos-Díaz JC, Favela-Torres E (2016) Cross-linked enzyme aggregates (CLEA) in enzyme improvement–a review. Biocatalysis 1:166–177

    Article  Google Scholar 

  • Verma ML, Barrow CJ, Puri M (2013) Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97:23–39

    Article  CAS  PubMed  Google Scholar 

  • Vrsanska M, Voberkova S, Jimenez Jimenez AM, Strmiska V, Adam V (2017) Preparation and optimisation of cross-linked enzyme aggregates using native isolate white rot fungi trametes versicolor and Fomes fomentarius for the decolourisation of synthetic dyes. Int J Environ Res Public Health 15:23

    Article  PubMed Central  CAS  Google Scholar 

  • Wang M, Qi W, Yu Q, Su R, He Z (2010) Cross-linking enzyme aggregates in the macropores of silica gel: a practical and efficient method for enzyme stabilization. Biochem Eng J 52:168–174

    Article  CAS  Google Scholar 

  • Wang A et al (2011a) A facile technique to prepare cross-linked enzyme aggregates using p-benzoquinone as cross-linking agent Korean. J Chem Eng 28:1090–1095

    Google Scholar 

  • Wang M, Qi W, Jia C, Ren Y, Su R, He Z (2011b) Enhancement of activity of cross-linked enzyme aggregates by a sugar-assisted precipitation strategy: technical development and molecular mechanism. J Biotechnol 156:30–38

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zheng D, Yin L, Wang F (2017) Preparation, activity and structure of cross-linked enzyme aggregates (CLEAs) with nanoparticle. Enzym Microb Technol 107:22–31

    Article  CAS  Google Scholar 

  • Wegman MA, Janssen MH, van Rantwijk F, Sheldon RA (2001) Towards biocatalytic synthesis of β-lactam antibiotics. Adv Synth Catal 343:559–576

    Article  CAS  Google Scholar 

  • Wilson L et al (2004a) Cross-linked aggregates of multimeric enzymes: a simple and efficient methodology to stabilize their quaternary structure. Biomacromolecules 5:814–817

    Article  CAS  PubMed  Google Scholar 

  • Wilson L, Illanes A, Pessela BC, Abian O, Fernandez-Lafuente R, Guisan JM (2004b) Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: evaluation of a novel biocatalyst in organic media. Biotechnol Bioeng 86:558–562

    Article  CAS  PubMed  Google Scholar 

  • Wilson L, Fernandez-Lorente G, Fernandez-Lafuente R, Illanes A, Guisan JM, Palomo JM (2006) CLEAs of lipases and poly-ionic polymers: a simple way of preparing stable biocatalysts with improved properties. Enzym Microb Technol 39:750–755

    Article  CAS  Google Scholar 

  • Xu D-Y, Yang Z (2013) Cross-linked tyrosinase aggregates for elimination of phenolic compounds from wastewater. Chemosphere 92:391–398

    Article  CAS  PubMed  Google Scholar 

  • Xu D-Y, Chen J-Y, Yang Z (2012) Use of cross-linked tyrosinase aggregates as catalyst for synthesis of L-DOPA. Biochem Eng J 63:88–94

    Article  CAS  Google Scholar 

  • Yamaguchi H, Miyazaki M, Asanomi Y, Maeda H (2011) Poly-lysine supported cross-linked enzyme aggregates with efficient enzymatic activity and high operational stability. Cat Sci Technol 1:1256–1261

    Article  CAS  Google Scholar 

  • Yamaguchi H, Kiyota Y, Miyazaki M (2018) Techniques for preparation of cross-linked enzyme aggregates and their applications in bioconversions. Catalysts 8:174

    Article  CAS  Google Scholar 

  • Yang K-L (2017) Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions. Enzym Microb Technol 100:52–59

    Article  CAS  Google Scholar 

  • Yang XE, Zheng P, Ni Y, Sun Z (2012) Highly efficient biosynthesis of sucrose-6-acetate with cross-linked aggregates of Lipozyme TL 100 L. J Biotechnol 161:27–33

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Chen H, Wang X, Yang Y, Ching C (2006) Cross-linked enzyme aggregates (CLEAs) with controlled particles: application to Candida rugosa lipase. J Mol Catal B Enzym 43:124–127

    Article  CAS  Google Scholar 

  • Zhao L, Zheng L, Gao G, Jia F, Cao S (2008) Resolution of N-(2-ethyl-6-methylphenyl) alanine via cross-linked aggregates of Pseudomonas sp. lipase. J Mol Catal B Enzym 54:7–12

    Article  CAS  Google Scholar 

  • Zhen Q, Wang M, Qi W, Su R, He Z (2013) Preparation of β-mannanase CLEAs using macromolecular cross-linkers. Cat Sci Technol 3:1937–1941

    Article  CAS  Google Scholar 

  • Zhou L, Tang W, Jiang Y, Ma L, He Y, Gao J (2016) Magnetic combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase: an efficient biocatalyst for dye decolourization. RSC Adv 6:90061–90068

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryam Sardar .

Editor information

Editors and Affiliations

Glossary

°C

Degree Celsius

APTES

3-aminopropyltriethoxysilane

BSA

Bovine serum albumin

CaLBCLEA

Candida antarctica B Cross-linked enzyme aggregates

CEM

CLEA-based enzyme microreactor

CLE

Cross linked enzymes

CLEAs

Cross-linked enzyme aggregates

CLEC

Cross linked enzyme crystals

DB-38

Direct Black-38

DtHNL-CLEAs

Davallia tyermannii Hydroxynitrile lyase Cross-linked enzyme aggregates

EDC

Endocrine disrupting chemicals

FAEEs

Fatty acid ethyl esters

FAPEs

Fatty acid propyl esters

GO

Glucose oxidase

HRP

Horseradish peroxidase

L-DOPA

3,4-Dihydroxyphenylalanine

m-CLEAs

MagneticCross-linked enzyme aggregates

Mg/L/hr.

Milligram/litre/hour

mM

Millimolar

MNPs

Magnetic nanoparticles

NAD

Nicotinamide adenine dinucleotide

PAL-CLEAs

Phenylalanine ammonia lyase- cross-linked enzyme aggregates

PSL-CLEA

Pseudomonassp. Lipase Cross-linked enzyme aggregates

SDS

Sodium dodecyl sulphate

SEM

Scanning Electron Microscopy

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noori, R., Perwez, M., Sardar, M. (2019). Cross-linked Enzyme Aggregates: Current Developments and Applications. In: Husain, Q., Ullah, M. (eds) Biocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-25023-2_5

Download citation

Publish with us

Policies and ethics