Skip to main content

Strategies to Reuse Cellulase: Immobilization of Enzymes (Part II)

  • Chapter
  • First Online:
Approaches to Enhance Industrial Production of Fungal Cellulases

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Industrial applications need enzymes that are economically viable and highly stable in terms of reusability, thus increasing practicability. The immobilization of cellulases is reported here using different chemical methods and polymeric supports. High costs of cellulases are one of the many obstacles for commercialization of biomass biorefineries. Cellulase immobilization allows the conditions of use of enzyme again and again retaining its activity and reducing production costs to use it for industrial application. Enzyme immobilization is accomplished by adsorption, entrapment, covalent binding, cross-linking, and encapsulation. Support material acts as a carrier for immobilized enzyme, having mechanical strength, large surface area, resistance to microbial attack, and many surface groups promoting interaction with enzyme. One procedure where no support is used is the formation of cross-linked enzyme aggregates (CLEA) in which enzyme cross-links with other enzyme-forming insoluble aggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad R, Sardar M (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 4(2):1

    CAS  Google Scholar 

  • Alkan S, Gür A, Ertan M, Savran A, Gür T, Genel Y (2009) Immobilization of catalase via adsorption into natural and modified active carbon obtained from walnut in various methods. Afr J Biotechnol 8(11):2631–2635

    CAS  Google Scholar 

  • Andriani D, Sunwoo C, Ryu HW, Prasetya B, Park DH (2012) Immobilization of cellulase from newly isolated strain Bacillus subtilis TD6 using calcium alginate as a support material. Bioprocess Biosyst Eng 35(1–2):29–33

    Article  CAS  PubMed  Google Scholar 

  • Apetrei IM, Rodriguez-Mendez ML, Apetrei C, De Saja JA (2013) Enzyme sensor based on carbon nanotubes/cobalt (II) phthalocyanine and tyrosinase used in pharmaceutical analysis. Sensors Actuators B Chem 177:138–144

    Article  CAS  Google Scholar 

  • Atadashi IM, Aroua MK, Aziz AA (2010) High quality biodiesel and its diesel engine application: a review. Renew Sust Energ Rev 14(7):1999–2008

    Article  CAS  Google Scholar 

  • Bai Y, Huang H, Meng K, Shi P, Yang P, Luo H et al (2012) Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chem 131(4):1473–1478

    Article  CAS  Google Scholar 

  • Betigeri SS, Neau SH (2002) Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23(17):3627–3636

    Article  CAS  PubMed  Google Scholar 

  • Bommarius AS, Riebel BR (2004) Biocatalysis: fundamentals and applications. Wiley. Appl Organometalic Chem 18: 373

    Google Scholar 

  • Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14(4):387–394

    Article  CAS  PubMed  Google Scholar 

  • Ceniceros ES, Ilyina A, Esquivel JC, Menchaca DR, Espinoza JF, Rodriguez OM (2003) Entrapment of enzymes in natural polymer extracted from residue of food industry: preparation methods, partial characterisation and possible application. Becth Mock 44:84–87

    Google Scholar 

  • Cerveró JM, Skovgaard PA, Felby C, Sørensen HR, Jørgensen H (2010) Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzym Microb Technol 46(3–4):177–184

    Article  CAS  Google Scholar 

  • Chang MY, Juang RS (2007) Use of chitosan–clay composite as immobilization support for improved activity and stability of β-glucosidase. Biochem Eng J 35(1):93–98

    Article  CAS  Google Scholar 

  • Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro AL, Lenk T, Werner C (2011) Immobilization of Bacillus licheniformis α-amylase onto reactive polymer films. J Biotechnol 154(4):216–221

    Article  CAS  PubMed  Google Scholar 

  • D’Souza SF (1998) Immobilized enzymes in bioprocess. Curr Sci 77:69–79

    Google Scholar 

  • Daoud FBO, Kaddour S, Sadoun T (2010) Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies. Colloids Surf B 75(1):93–99

    Article  CAS  Google Scholar 

  • Das R, Ghosh S, Bhattacharjee C (2012) Enzyme membrane reactor in isolation of antioxidative peptides from oil industry waste: a comparison with non-peptidic antioxidants. LWT-Food Sci Technol 47(2):238–245

    Article  CAS  Google Scholar 

  • Dowe N (2009) Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols. In: Biofuels. Humana Press, Totowa, pp 233–245

    Chapter  Google Scholar 

  • Flores-Maltos A, Rodríguez-Durán LV, Renovato J, Contreras JC, Rodríguez R, Aguilar CN (2011) Catalytical properties of free and immobilized Aspergillus niger tannase. Enzym Res 2011:768183.

    Google Scholar 

  • Gomes-Ruffi CR, da Cunha RH, Almeida EL, Chang YK, Steel CJ (2012) Effect of the emulsifier sodium stearoyl lactylate and of the enzyme maltogenic amylase on the quality of pan bread during storage. LWT-Food Sci Technol 49(1):96–101

    Article  CAS  Google Scholar 

  • Gupta A, Khare SK (2009) Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology. Crit Rev Biotechnol 29(1):44–54

    Article  CAS  PubMed  Google Scholar 

  • Hakala TK, Liitiä T, Suurnäkki A (2013) Enzyme-aided alkaline extraction of oligosaccharides and polymeric xylan from hardwood kraft pulp. Carbohydr Polym 93(1):102–108

    Article  CAS  PubMed  Google Scholar 

  • Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17(18):4577–4593

    Article  CAS  Google Scholar 

  • Hsieh HJ, Liu PC, Liao WJ (2000) Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnol Lett 22(18):1459–1464

    Article  CAS  Google Scholar 

  • Husain Q (2017) Nanomaterials immobilized cellulolytic enzymes and their industrial applications: a literature review. Biol 4(3):1029

    Google Scholar 

  • Ismail B, Nielsen SS (2010) Invited review: plasmin protease in milk: current knowledge and relevance to dairy industry. J Dairy Sci 93(11):4999–5009

    Article  CAS  PubMed  Google Scholar 

  • Jaros D, Rohm H (2015) Enzymes exogenous to Milk in dairy technology: transglutaminase. Reference Module in Food Science. 10.1016/B978-0-08-100596-5.21158-X.

    Google Scholar 

  • Jegannathan KR, Jun-Yee L, Chan ES, Ravindra P (2010) Production of biodiesel from palm oil using liquid core lipase encapsulated in κ-carrageenan. Fuel 89(9):2272–2277

    Article  CAS  Google Scholar 

  • Jordan J, Theegala C (2014) Probing the limitations for recycling cellulase enzymes immobilized on iron oxide (Fe 3 O 4) nanoparticles. Biomass Conv Biorefinery 4(1):25–33

    Article  CAS  Google Scholar 

  • Jordan J, Kumar CS, Theegala C (2011) Preparation and characterization of cellulase-bound magnetite nanoparticles. J Mol Catal B Enzym 68(2):139–146

    Article  CAS  Google Scholar 

  • Kapoor M, Kuhad RC (2007) Immobilization of xylanase from Bacillus pumilus strain MK001 and its application in production of xylo-oligosaccharides. Appl Biochem Biotechnol 142(2):125–138

    Article  CAS  PubMed  Google Scholar 

  • Kawaguti HY, Manrich E, Sato HH (2006) Production of isomaltulose using Erwinia sp. D12 cells: culture medium optimization and cell immobilization in alginate. Biochem Eng J 29(3):270–277

    Article  CAS  Google Scholar 

  • Klein MP, Scheeren CW, Lorenzoni ASG, Dupont J, Frazzon J, Hertz PF (2011) Ionic liquid-cellulose film for enzyme immobilization. Process Biochem 46(6):1375–1379

    Article  CAS  Google Scholar 

  • Kress J, Zanaletti R, Amour A, Ladlow M, Frey JG, Bradley M (2002) Enzyme accessibility and solid supports: which molecular weight enzymes can be used on solid supports? An investigation using confocal Raman microscopy. Chem Eur J 8(16):3769–3772

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni SJ (2014) Use of biotechnology for synthesis of various products from different feedstocks-a review. Int J Adv Res Biotechnol 2(2):1–3

    Google Scholar 

  • Kulkarni SJ, Shinde NL, Goswami AK (2015) A review on ethanol production from agricultural waste raw material. Int J Sci Res Sci Eng Technol 1:231–233

    Google Scholar 

  • Liao HD, Yuan L, Tong CY, Zhu YH, Li D, Liu XM (2008) Immobilization of cellulase based on polyvinyl alcohol/Fe2O3 nanoparticles. Chem J Chin Univ 29:1564–1568

    CAS  Google Scholar 

  • Luo K, Yang QI, Yu J, Li XM, Yang GJ, Xie BX, Zeng GM (2011) Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresour Technol 102(14):7103–7110

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251(4999):1318–1323

    Article  CAS  Google Scholar 

  • Mabee WE, Saddler JN (2010) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 101(13):4806–4813

    Article  CAS  PubMed  Google Scholar 

  • Massolini G, Calleri E (2005) Immobilized trypsin systems coupled on-line to separation methods: recent developments and analytical applications. J Sep Sci 28(1):7–21

    Article  CAS  PubMed  Google Scholar 

  • Matto M, Husain Q (2009) Calcium alginate–starch hybrid support for both surface immobilization and entrapment of bitter gourd (Momordica charantia) peroxidase. J Mol Catal B Enzym 57(1–4):164–170

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68

    Article  CAS  Google Scholar 

  • Ortega N, Busto MD, Perez-Mateos M (2001) Kinetics of cellulose saccharification by Trichoderma reesei cellulases. Int Biodeter Biodegr 47(1):7–14

    Article  CAS  Google Scholar 

  • Phadtare S, Vyas S, Palaskar DV, Lachke A, Shukla PG, Sivaram S, Sastry M (2004) Enhancing the reusability of endoglucanase-gold nanoparticle bioconjugates by tethering to polyurethane microspheres. Biotechnol Prog 20(6):1840–1846

    Article  CAS  PubMed  Google Scholar 

  • Raafat AI, Araby E, Lotfy S (2012) Enhancement of fibrinolytic enzyme production from Bacillus subtilis via immobilization process onto radiation synthesized starch/dimethylaminoethyl methacrylate hydrogel. Carbohydr Polym 87(2):1369–1374

    Article  CAS  Google Scholar 

  • Rao CS, Prakasham RS, Rao AB, Yadav JS (2008) Functionalized alginate as immobilization matrix in enantioselective L (+) lactic acid production by Lactobacillus delbrucekii. Appl Biochem Biotechnol 149(3):219–228

    Article  CAS  PubMed  Google Scholar 

  • Rao CS, Sathish T, Ravichandra P, Prakasham RS (2009) Characterization of thermo-and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem 44(3):262–268

    Article  CAS  Google Scholar 

  • Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 6(1):461

    Google Scholar 

  • Satar R, Matto M, Husain Q (2008) Studies on calcium alginate-pectin gel entrapped concanavalin A-bitter gourd (Momordica charantia) peroxidase complex. J Sci Ind Res 67:609–615

    CAS  Google Scholar 

  • Schückel J, Matura A, Van Pee KH (2011) One-copper laccase-related enzyme from Marasmius sp.: purification, characterization and bleaching of textile dyes. Enzym Microb Technol 48(3):278–284

    Article  CAS  Google Scholar 

  • Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349(8–9):1289–1307

    Article  CAS  Google Scholar 

  • Singh BD (2009) Biotechnology expanding horizons. Kalyani, Ludhiana

    Google Scholar 

  • Soldatkin OO, Kucherenko IS, Pyeshkova VM, Kukla AL, Jaffrezic-Renault N, El'Skaya AV et al (2012) Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochemistry 83:25–30

    Article  CAS  PubMed  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Qingxiang Z, Hui H, Qin L, Yi Z (1997) Removal of toxic phenol and 4-chlorophenol from waste water by horseradish peroxidase. Chemosphere 34(4):893–903

    Article  CAS  Google Scholar 

  • Tonini D, Astrup T (2012) Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste. Waste Manag 32(1):165–176

    Article  CAS  PubMed  Google Scholar 

  • Tümtürk H, Karaca N, Demirel G, Åžahin F (2007) Preparation and application of poly (N, N-dimethylacrylamide-co-acrylamide) and poly (N-isopropylacrylamide-co-acrylamide)/κ-Carrageenan hydrogels for immobilization of lipase. Int J Biol Macromol 40(3):281–285

    Article  PubMed  CAS  Google Scholar 

  • Ur Rehman A, Kovacs Z, Quitmann H, Ebrahimi M, Czermak P (2016) Enzymatic production of fructooligosaccharides from inexpensive and abundant substrates using a membrane reactor system. Sep Sci Technol 51(9):1537–1545

    CAS  Google Scholar 

  • van de Velde F, Lourenço ND, Pinheiro HM, Bakker M (2002) Carrageenan: A Food Grade and Biocompatible Support for Immobilisation Techniques. Adv Synth & Catal 344(8):815–835

    Google Scholar 

  • Verma ML, Puri M, Barrow CJ (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 36(1):108–119

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Lia YK (2008) Application of bacterial cellulose pellets in enzyme immobilization. J Mol Catal B Enzym 54(3–4):103–108

    Article  CAS  Google Scholar 

  • Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Irfan, M., Ghazanfar, M., Ur Rehman, A., Siddique, A. (2019). Strategies to Reuse Cellulase: Immobilization of Enzymes (Part II). In: Srivastava, M., Srivastava, N., Ramteke, P., Mishra, P. (eds) Approaches to Enhance Industrial Production of Fungal Cellulases . Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14726-6_9

Download citation

Publish with us

Policies and ethics