Skip to main content

Advertisement

Log in

Green synthesis of silver nanoparticles using Rhodiola imbricata and Withania somnifera root extract and their potential catalytic, antioxidant, cytotoxic and growth-promoting activities

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study presents the development of a sustainable production process of environmentally benign silver nanoparticles (AgNPs) from aqueous root extract of Rhodiola imbricata (RI) and Withania somnifera (WS) for mitigating environmental pollution and investigating their potential applications in agriculture and biomedical industry. RIWS-AgNPs were characterized using several analytical techniques (UV–Vis, DLS, HR-TEM, SAED, EDX and FTIR). The antioxidant and anticancer activity of RIWS-AgNPs were estimated by DPPH and MTT assay, respectively. UV–Vis and DLS analysis indicated that equal ratio of RIWS-extract and silver nitrate (1:1) is optimum for green synthesis of well-dispersed AgNPs (λmax: 430 nm, polydispersity index: 0.179, zeta potential: − 17.9 ± 4.14). HR-TEM and SAED analysis confirmed the formation of spherical and crystalline RIWS-AgNPs (3742 nm). FTIR analysis demonstrated that the phenolic compounds are probably involved in stabilization of RIWS-AgNPs. RIWS-AgNPs showed effective catalytic degradation of hazardous environmental pollutant (4-nitrophenol). RIWS-AgNPs treatment significantly increased the growth and photosynthetic pigments of Hordeum vulgare in a size- and dose-dependent manner (germination (77%), chlorophyll a (12.62 ± 0.07 μg/ml) and total carotenoids (7.05 ± 0.04 μg/ml)). The DPPH assay demonstrated that RIWS-AgNPs exert concentration-dependent potent antioxidant activity (IC50: 12.30 μg/ml, EC50: 0.104 mg/ml, ARP: 959.45). Moreover, RIWS-AgNPs also confer strong cytotoxic activity against HepG2 cancer cell line in dose-dependent manner (cell viability: 9.51 ± 1.55%). Overall, the present study for the first time demonstrated a green technology for the synthesis of stable RIWS-AgNPs and their potential applications in biomedical and agriculture industry as phytostimulatory, antioxidant and anticancer agent. Moreover, RIWS-AgNPs could potentially be used as a green alternative for environmental remediation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28. https://doi.org/10.1016/j.jare.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  2. Larue C, Castillo-Michel H, Sobanska S et al (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106. https://doi.org/10.1016/j.jhazmat.2013.10.053

    Article  CAS  PubMed  Google Scholar 

  3. Mohasseli V, Farbood F, Moradi A (2020) Antioxidant defense and metabolic responses of lemon balm (Melissa officinalis L.) to Fe-nano-particles under reduced irrigation regimes. Ind Crops Prod 149:112338. https://doi.org/10.1016/j.indcrop.2020.112338

    Article  CAS  Google Scholar 

  4. Islam NU, Jalil K, Shahid M et al (2019) Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem 12:2914–2925. https://doi.org/10.1016/j.arabjc.2015.06.025

    Article  CAS  Google Scholar 

  5. Yokoyama K, Welchons DR (2007) The conjugation of amyloid beta protein on the gold colloidal nanoparticles’ surfaces. Nanotechnology 18:105101. https://doi.org/10.1088/0957-4484/18/10/105101

    Article  CAS  Google Scholar 

  6. Wang J, Wang Z (2007) Rapid synthesis of hexagon-shaped gold nanoplates by microwave assistant method. Mater Lett 61:4149–4151. https://doi.org/10.1016/j.matlet.2007.01.043

    Article  CAS  Google Scholar 

  7. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96. https://doi.org/10.1016/j.cis.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  8. Hembram KC, Kumar R, Kandha L et al (2018) Therapeutic prospective of plant-induced silver nanoparticles: application as antimicrobial and anticancer agent. Artif Cells Nanomed Biotechnol 46:S38–S51. https://doi.org/10.1080/21691401.2018.1489262

    Article  PubMed  Google Scholar 

  9. Alharbi NS, Govindarajan M, Kadaikunnan S et al (2018) Nanosilver crystals capped with Bauhinia acuminata phytochemicals as new antimicrobials and mosquito larvicides. J Trace Elem Med Biol 50:146–153. https://doi.org/10.1016/j.jtemb.2018.06.016

    Article  CAS  PubMed  Google Scholar 

  10. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49. https://doi.org/10.1002/tox.20610

    Article  CAS  PubMed  Google Scholar 

  11. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246. https://doi.org/10.1016/j.scitotenv.2009.06.024

    Article  CAS  PubMed  Google Scholar 

  12. Eby DM, Luckarift HR, Johnson GR (2009) Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces 1:1553–1560. https://doi.org/10.1021/am9002155

    Article  CAS  PubMed  Google Scholar 

  13. Mukherjee P, Roy M, Mandal BP et al (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:75103. https://doi.org/10.1088/0957-4484/19/7/075103

    Article  CAS  Google Scholar 

  14. Zou T, Percival SS, Cheng Q et al (2012) Preparation, characterization, and induction of cell apoptosis of cocoa procyanidins–gelatin–chitosan nanoparticles. Eur J Pharm Biopharm 82:36–42. https://doi.org/10.1016/j.ejpb.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  15. Sepeur S (2008) Nanotechnology: technical basics and applications. Vincentz Network, Germany

    Google Scholar 

  16. Mukherjee S, Chowdhury D, Kotcherlakota R et al (2014) Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4:316–335. https://doi.org/10.7150/thno.7819

    Article  PubMed  PubMed Central  Google Scholar 

  17. Abbasi E, Milani M, Aval SF et al (2016) Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit Rev Microbiol 42:173–180. https://doi.org/10.3109/1040841X.2014.912200

    Article  CAS  PubMed  Google Scholar 

  18. Ahmad A, Wei Y, Syed F et al (2016) Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: a novel green approach. J Photochem Photobiol B Biol 161:17–24. https://doi.org/10.1016/j.jphotobiol.2016.05.003

    Article  CAS  Google Scholar 

  19. Ovais M, Khalil AT, Raza A et al (2016) Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine 11:3157–3177. https://doi.org/10.2217/nnm-2016-0279

    Article  CAS  PubMed  Google Scholar 

  20. Mittal J, Batra A, Singh A, Sharma MM (2014) Phytofabrication of nanoparticles through plant as nanofactories. Adv Nat Sci Nanosci Nanotechnol 5:43002. https://doi.org/10.1088/2043-6262/5/4/043002

    Article  CAS  Google Scholar 

  21. Rajeshkumar S, Bharath LV (2017) Mechanism of plant-mediated synthesis of silver nanoparticles—a review on biomolecules involved, characterisation and antibacterial activity. Chem Biol Interact 273:219–227. https://doi.org/10.1016/j.cbi.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  22. Jadhav K, Dhamecha D, Bhattacharya D, Patil M (2016) Green and ecofriendly synthesis of silver nanoparticles: characterization, biocompatibility studies and gel formulation for treatment of infections in burns. J Photochem Photobiol B Biol 155:109–115. https://doi.org/10.1016/j.jphotobiol.2016.01.002

    Article  CAS  Google Scholar 

  23. Ajitha B, Reddy YAK, Reddy PS (2015) Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: evaluation of their innate antimicrobial and catalytic activities. J Photochem Photobiol B Biol 146:1–9. https://doi.org/10.1016/j.jphotobiol.2015.02.017

    Article  CAS  Google Scholar 

  24. Patra JK, Das G, Baek K-H (2016) Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. J Photochem Photobiol B Biol 161:200–210. https://doi.org/10.1016/j.jphotobiol.2016.05.021

    Article  CAS  Google Scholar 

  25. Baldi A, Singh D, Dixit VK (2008) Dual elicitation for improved production of Withaferin A by cell suspension cultures of Withania somnifera. Appl Biochem Biotechnol 151:556. https://doi.org/10.1007/s12010-008-8231-2

    Article  CAS  PubMed  Google Scholar 

  26. Kumar A, Kaul MK, Bhan MK et al (2007) Morphological and chemical variation in 25 collections of the Indian medicinal plant, Withania somnifera (L.) Dunal (Solanaceae). Genet Resour Crop Evol 54:655–660. https://doi.org/10.1007/s10722-006-9129-x

    Article  CAS  Google Scholar 

  27. Singh S, Sushil K (1998) Withania somnifera: the Indian Ginseng Ashwagandha. Central Institute of Medicinal and Aromatic Plants, Lucknow

    Google Scholar 

  28. Kumar A, Mir BA, Sehgal D et al (2011) Utility of a multidisciplinary approach for genome diagnostics of cultivated and wild germplasm resources of medicinal Withania somnifera, and the status of new species, W. ashwagandha, in the cultivated taxon. Plant Syst Evol 291:141–151. https://doi.org/10.1007/s00606-010-0372-4

    Article  Google Scholar 

  29. Asthana R, Raina MK (1989) Pharmacology of Withania somnifera (L.) Dunal—a review. Indian Drugs 26:199–205

    Google Scholar 

  30. Fatima N, Ahmad N, Ahmad I, Anis M (2015) Interactive effects of growth regulators, carbon sources, pH on plant regeneration and assessment of genetic fidelity using single primer amplification reaction (SPARS) techniques in Withania somnifera L. Appl Biochem Biotechnol 177:118–136. https://doi.org/10.1007/s12010-015-1732-x

    Article  CAS  PubMed  Google Scholar 

  31. Sivanandhan G, Mariashibu TS, Arun M et al (2011) The effect of polyamines on the efficiency of multiplication and rooting of Withania somnifera (L.) Dunal and content of some withanolides in obtained plants. Acta Physiol Plant 33:2279. https://doi.org/10.1007/s11738-011-0768-y

    Article  CAS  Google Scholar 

  32. Udayakumar R, Kasthurirengan S, Mariashibu TS et al (2014) Agrobacterium-mediated genetic transformation of Withania somnifera using nodal explants. Acta Physiol Plant 36:1969–1980. https://doi.org/10.1007/s11738-014-1572-2

    Article  CAS  Google Scholar 

  33. Bhattacharya SK, Goel RK, Kaur R, Ghosal S (1987) Anti-stress activity of sitoindosides VII and VIII, new acylsterylglucosides from Withania somnifera. Phyther Res 1:32–37. https://doi.org/10.1002/ptr.2650010108

    Article  CAS  Google Scholar 

  34. Das CN, Gupta VK, Sangwan RS (2007) Leaf ontogenic phase-related dynamics of withaferin a and withanone biogenesis in ashwagandha (Withania somnifera Dunal.)—an important medicinal herb. J Plant Biol 50:508. https://doi.org/10.1007/BF03030691

    Article  Google Scholar 

  35. Nur-e-Alam M, Yousaf M, Qureshi S et al (2003) A novel Dimeric Podophyllotoxin-type lignan and a new Withanolide from Withania coagulans. Helv Chim Acta 86:607–614. https://doi.org/10.1002/hlca.200390060

    Article  CAS  Google Scholar 

  36. Chatterjee S, Srivastava S, Khalid A et al (2010) Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochemistry 71:1085–1094. https://doi.org/10.1016/j.phytochem.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  37. Choudhary A, Kumar R, Srivastava RB et al (2015) Isolation and characterization of phenolic compounds from Rhodiola imbricata, a Trans-Himalayan food crop having antioxidant and anticancer potential. J Funct Foods 16:183–193. https://doi.org/10.1016/j.jff.2015.04.013

    Article  CAS  Google Scholar 

  38. Kapoor S, Raghuvanshi R, Bhardwaj P et al (2018) Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata Edgew. J Photochem Photobiol B Biol 183:258–265. https://doi.org/10.1016/j.jphotobiol.2018.04.018

    Article  CAS  Google Scholar 

  39. Chawla R, Jaiswal S, Kumar R et al (2010) Himalayan Bioresource Rhodiola imbricata as a promising radioprotector for nuclear and radiological emergencies. J Pharm Bioallied Sci 2:213–219. https://doi.org/10.4103/0975-7406.68503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gupta V, Lahiri SS, Sultana S et al (2010) Anti-oxidative effect of Rhodiola imbricata root extract in rats during cold, hypoxia and restraint (C-H-R) exposure and post-stress recovery. Food Chem Toxicol 48:1019–1025. https://doi.org/10.1016/j.fct.2010.01.012

    Article  CAS  PubMed  Google Scholar 

  41. Senthilkumar R, Chandran R, Parimelazhagan T (2014) Hepatoprotective effect of Rhodiola imbricata rhizome against paracetamol-induced liver toxicity in rats. Saudi J Biol Sci 21:409–416. https://doi.org/10.1016/j.sjbs.2014.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tayade AB, Dhar P, Kumar J et al (2013) Chemometric profile of root extracts of Rhodiola imbricata Edgew. With hyphenated gas chromatography mass spectrometric technique. PLoS ONE. https://doi.org/10.1371/journal.pone.0052797

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gupta V, Saggu S, Tulsawani RK et al (2008) A dose dependent adaptogenic and safety evaluation of Rhodiola imbricata Edgew, a high altitude rhizome. Food Chem Toxicol 46:1645–1652. https://doi.org/10.1016/j.fct.2007.12.027

    Article  CAS  PubMed  Google Scholar 

  44. Khanna K, Mishra KP, Ganju L, Singh SB (2017) Golden root: a wholesome treat of immunity. Biomed Pharmacother 87:496–502. https://doi.org/10.1016/j.biopha.2016.12.132

    Article  PubMed  Google Scholar 

  45. Tayade AB, Dhar P, Kumar J et al (2017) Trans-Himalayan Rhodiola imbricata Edgew. root: a novel source of dietary amino acids, fatty acids and minerals. J Food Sci Technol 54:359–367. https://doi.org/10.1007/s13197-016-2469-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tayade AB, Dhar P, Kumar J et al (2013) Sequential determination of fat- and water-soluble vitamins in Rhodiola imbricata root from trans-Himalaya with rapid resolution liquid chromatography/tandem mass spectrometry. Anal Chim Acta 789:65–73. https://doi.org/10.1016/j.aca.2013.05.062

    Article  CAS  PubMed  Google Scholar 

  47. Nakkala JR, Mata R, Raja K et al (2018) Green synthesized silver nanoparticles: catalytic dye degradation, in vitro anticancer activity and in vivo toxicity in rats. Mater Sci Eng C 91:372–381. https://doi.org/10.1016/j.msec.2018.05.048

    Article  CAS  Google Scholar 

  48. Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV–VIS spectroscopy. Curr Protoc Food Anal Chem 1:F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01

    Article  Google Scholar 

  49. Choi CW, Kim SC, Hwang SS et al (2002) Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci 163:1161–1168. https://doi.org/10.1016/S0168-9452(02)00332-1

    Article  CAS  Google Scholar 

  50. Prakash D, Upadhyay G, Singh BN, Singh HB (2007) Antioxidant and free radical-scavenging activities of seeds and agri-wastes of some varieties of soybean (Glycine max). Food Chem 104:783–790. https://doi.org/10.1016/j.foodchem.2006.12.029

    Article  CAS  Google Scholar 

  51. Kroyer GT (2004) Red clover extract as antioxidant active and functional food ingredient. Innov Food Sci Emerg Technol 5:101–105. https://doi.org/10.1016/S1466-8564(03)00040-7

    Article  CAS  Google Scholar 

  52. Dajanta K, Apichartsrangkoon A, Chukeatirote E (2011) Antioxidant properties and total phenolics of Thua Nao (a Thai Fermented Soybean)as affected by Bacillus-fermentation. J Microb Biochem Technol 03:56–59. https://doi.org/10.4172/1948-5948.1000052

    Article  CAS  Google Scholar 

  53. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  54. Forthofer RN, Lee ES, Hernandez M (2007) 6—Study designs. In: Forthofer RN, Lee ES, Hernandez MBT-B, Second E (eds) Biostatistics: a guide to design, analysis and discovery. Academic Press, San Diego: 135–167. https://www.sciencedirect.com/book/9780123694928/biostatistics?via=ihub=#book-description

  55. Padmos JD, Boudreau RTM, Weaver DF, Zhang P (2015) Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles. Langmuir 31:3745–3752. https://doi.org/10.1021/acs.langmuir.5b00049

    Article  CAS  PubMed  Google Scholar 

  56. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800. https://doi.org/10.1021/la9502711

    Article  CAS  Google Scholar 

  57. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surfaces B Biointerfaces 82:152–159. https://doi.org/10.1016/j.colsurfb.2010.08.036

    Article  CAS  PubMed  Google Scholar 

  58. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  59. Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8:409–427. https://doi.org/10.1007/s12551-016-0218-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bastos Araruna F, Oliveira Sousa Araruna F, Lima Alves Pereira LP et al (2020) Green syntheses of silver nanoparticles using babassu mesocarp starch (Attalea speciosa Mart. ex Spreng.) and their antimicrobial applications. Environ Nanotechnol Monit Manag 13:100281. https://doi.org/10.1016/j.enmm.2019.100281

    Article  Google Scholar 

  61. Vijayaraghavan K, Nalini SPK, Prakash NU, Madhankumar D (2012) Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Mater Lett 75:33–35. https://doi.org/10.1016/j.matlet.2012.01.083

    Article  CAS  Google Scholar 

  62. Jagtap UB, Bapat VA (2013) Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crops Prod 46:132–137. https://doi.org/10.1016/j.indcrop.2013.01.019

    Article  CAS  Google Scholar 

  63. Awwad AM, Salem NM, Abdeen AO (2013) Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int J Ind Chem 4:29. https://doi.org/10.1186/2228-5547-4-29

    Article  Google Scholar 

  64. Raut RW, Mendhulkar VD, Kashid SB (2014) Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate. J Photochem Photobiol B Biol 132:45–55. https://doi.org/10.1016/j.jphotobiol.2014.02.001

    Article  CAS  Google Scholar 

  65. Panneerselvam C, Murugan K, Roni M et al (2016) Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol Res 115:997–1013. https://doi.org/10.1007/s00436-015-4828-x

    Article  PubMed  Google Scholar 

  66. Paulkumar K, Gnanajobitha G, Vanaja M et al (2014) Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J 2014:829894. https://doi.org/10.1155/2014/829894

    Article  CAS  Google Scholar 

  67. Chern J-M, Chien Y-W (2002) Adsorption of nitrophenol onto activated carbon: isotherms and breakthrough curves. Water Res 36:647–655. https://doi.org/10.1016/S0043-1354(01)00258-5

    Article  CAS  PubMed  Google Scholar 

  68. U.S. Environmental Protection Agency (2016) https://www.epa.gov/sites/production/files/2016-09/documents/4-nitrophenol.pdf. Accessed 06 Apr 2020

  69. U.S. Environmental Protection Agency (2019) https://www.epa.gov/sites/production/files/2019-03/documents/ambient-wqc-nitrophenols-1980.pdf. Accessed 06 Apr 2020

  70. Singh J, Kaur N, Kaur P et al (2018) Piper betle leaves mediated synthesis of biogenic SnO2 nanoparticles for photocatalytic degradation of reactive yellow 186 dye under direct sunlight. Environ Nanotechnol Monit Manag 10:331–338. https://doi.org/10.1016/j.enmm.2018.07.001

    Article  Google Scholar 

  71. Wu F, Yang Q (2011) Ammonium bicarbonate reduction route to uniform gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering. Nano Res 4:861–869. https://doi.org/10.1007/s12274-011-0142-9

    Article  CAS  Google Scholar 

  72. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. https://doi.org/10.1021/cr030698

    Article  CAS  PubMed  Google Scholar 

  73. Vella F (1995) Principles of bioinorganic chemistry pp 411. University Science Books, Mill Valley, California. 1994. Biochem Educ 23:115. https://doi.org/10.1016/0307-4412(95)90685-1

  74. Sallam SA, Orabi AS, Abbas AM (2011) DNA interaction with octahedral and square planar Ni(II) complexes of aspartic-acid Schiff-bases. J Mol Struct 1006:272–281. https://doi.org/10.1016/j.molstruc.2011.09.020

    Article  CAS  Google Scholar 

  75. Edison TJI, Sethuraman MG (2013) Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochim Acta Part A Mol Biomol Spectrosc 104:262–264. https://doi.org/10.1016/j.saa.2012.11.084

    Article  CAS  Google Scholar 

  76. Francis S, Joseph S, Koshy EP, Mathew B (2018) Microwave assisted green synthesis of silver nanoparticles using leaf extract of Elephantopus scaber and its environmental and biological applications. Artif Cells Nanomed Biotechnol 46:795–804. https://doi.org/10.1080/21691401.2017.1345921

    Article  CAS  PubMed  Google Scholar 

  77. Gupta SD, Agarwal A, Pradhan S (2018) Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: an insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol Environ Saf 161:624–633. https://doi.org/10.1016/j.ecoenv.2018.06.023

    Article  CAS  PubMed  Google Scholar 

  78. Qian H, Peng X, Han X et al (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1956. https://doi.org/10.1016/S1001-0742(12)60301-5

    Article  CAS  Google Scholar 

  79. Mirzajani F, Askari H, Hamzelou S et al (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54. https://doi.org/10.1016/j.ecoenv.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  80. Syu Y, Hung J-H, Chen J-C, Chuang H (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64. https://doi.org/10.1016/j.plaphy.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  81. Vannini C, Domingo G, Onelli E et al (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 8:7e68752

    Article  Google Scholar 

  82. Thiruvengadam M, Gurunathan S, Chung I-M (2015) Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma 252:1031–1046. https://doi.org/10.1007/s00709-014-0738-5

    Article  CAS  PubMed  Google Scholar 

  83. Baskar V, Venkatesh J, Park SW (2015) Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. pekinensis. Environ Sci Pollut Res 22:17672–17682. https://doi.org/10.1007/s11356-015-4864-1

    Article  CAS  Google Scholar 

  84. Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948. https://doi.org/10.1021/jf00018a005

    Article  CAS  Google Scholar 

  85. Kumar B, Smita K, Seqqat R et al (2016) In vitro evaluation of silver nanoparticles cytotoxicity on Hepatic cancer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application. J Photochem Photobiol B Biol 159:8–13. https://doi.org/10.1016/j.jphotobiol.2016.03.011

    Article  CAS  Google Scholar 

  86. Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA (2014) Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc 18:356–363. https://doi.org/10.1016/j.jscs.2013.09.011

    Article  CAS  Google Scholar 

  87. Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14. https://doi.org/10.1042/bj2190001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nakagawa H, Fujita M, Fujimoto A (2019) Genome sequencing analysis of liver cancer for precision medicine. Semin Cancer Biol 55:120–127. https://doi.org/10.1016/j.semcancer.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  89. World Health Organization (2018) https://www.who.int/hepatitis/news-events/world-cancer-day/en/. Accessed 06 Apr 2020

  90. American cancer society, Global cancer, Facts and figures 4th edition, USA (2018) https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/global-cancer-facts-and-figures/global-cancer-facts-and-figures-4th-edition.pdf. Accessed 06 Apr 2020

  91. I.I.f.H. Informatics (2016) http://www.imshealth.com/en/thought-leadership/ims-institute2016. Accessed 25 Feb 2018

  92. Barabadi H, Alizadeh A, Ovais M et al (2018) Efficacy of green nanoparticles against cancerous and normal cell lines: a systematic review and meta-analysis. IET Nanobiotechnol 12:377–391. https://doi.org/10.1049/iet-nbt.2017.0120

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chahardoli A, Karimi N, Fattahi A (2018) Nigella arvensis leaf extract mediated green synthesis of silver nanoparticles: their characteristic properties and biological efficacy. Adv Powder Technol 29:202–210. https://doi.org/10.1016/j.apt.2017.11.003

    Article  CAS  Google Scholar 

  94. Raghunandan D, Ravishankar B, Sharanbasava G et al (2011) Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol 2:57–65. https://doi.org/10.1007/s12645-011-0014-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sahu SC, Zheng J, Graham L et al (2014) Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol 34:1155–1166. https://doi.org/10.1002/jat.2994

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Defence Research & Development Organization (DRDO), Ministry of Defence, Government of India, for financial support. Authors also wish to acknowledge Aastha Khullar (Department of Rheumatology, PGIMER, Chandigarh), Pankhuri Narula (Kusuma school of biological sciences, IIT, Delhi), Pulkit Bindra (INST, Chandigarh), Rajendra Kumar Singh (DIHAR, DRDO), Gurudev Singh (Department of Botany, Panjab University, Chandigarh), Dr. Archana Bhatnagar (Department of Biochemistry, Panjab University, Chandigarh) and SAIF Department (Panjab University (Chandigarh), AIIMS (Delhi) and IIT Delhi). The authors are also grateful to Rashmi Gupta and Ankit khullar for copy-editing of the manuscript.

Funding

This study was funded by Defence Research & Development Organization (DRDO), Ministry of Defence, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SK; methodology: SK; formal analysis and investigation: SK; writing—original draft preparation: SK; writing—review and editing: SK and HS; funding acquisition: OPC; resources: SK, HS, SS and OPC and supervision: HS, SS and OPC.

Corresponding author

Correspondence to Hemant Sood.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, S., Sood, H., Saxena, S. et al. Green synthesis of silver nanoparticles using Rhodiola imbricata and Withania somnifera root extract and their potential catalytic, antioxidant, cytotoxic and growth-promoting activities. Bioprocess Biosyst Eng 45, 365–380 (2022). https://doi.org/10.1007/s00449-021-02666-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02666-9

Keywords

Navigation