Skip to main content
Log in

Dual Elicitation for Improved Production of Withaferin A by Cell Suspension Cultures of Withania somnifera

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

High yielding transformed callus culture of W. somnifera was established by infecting hypocotyls with Agrobacterium tumefaciens MTCC-2250. Maximum withaferin A content of 0.0875 mg/g dry cell weight and transformation efficiency of 80% were obtained. Confirmation of transformation was done on the basis of the presence of the ags gene by using polymerase chain reaction. Various abiotic elicitors (arachidonic acid, methyl jasmonate, calcium chloride, and copper sulfate) and biotic elicitors (cell extracts and culture filtrates of Alternia alternata, Fusarium solani, and Verticilium dahaliae) were tested at different concentrations to enhance withaferin A production in suspension culture of transformed cells. Maximum enhancements of 5.4 times and 9.7 times, respectively, were obtained when copper sulfate (100 μM) and the cell extract of V. dahaliae (5% v/v) were added separately to suspension cultures. The dual elicitation strategy by the combined addition of these two elicitors resulted in 13.8-fold enhancement of withaferin A content in comparison to control cultures (2.65 mg/L). The present study indicates the potential of this biotechnology-based methodology for the large-scale production of withaferin A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Winters, M. (2006). Alternative Medicine Review, 11, 269–277.

    Google Scholar 

  2. Al-Hindawi, M. K., Al-Khafaji, S., & Abdul-Nabi, M. (1992). Journal of Ethnopharmacology, 37, 113–116.

    Article  CAS  Google Scholar 

  3. Devi, P. U., Sharada, A. C., Solomon, F. E., & Kamath, M. (1992). Indian Journal of Experimental Biology, 30, 169.

    CAS  Google Scholar 

  4. Bhattacharya, S. K., Satyan, K. S., & Ghosal, S. (1997). Indian Journal of Experimental Biology, 35, 236–239.

    CAS  Google Scholar 

  5. Kulkarni, S. K., George, B., & Mathur, R. (1998). Phytotherapy Research, 12, 451–453.

    Article  CAS  Google Scholar 

  6. Furmanowa, M., Gajdzis, K. D., Ruszkowska, J., Czarnocki, Z., Obidoska, G., Sadowska, A., et al. (2001). Planta Medica, 67, 146–149.

    Article  CAS  Google Scholar 

  7. Banerjee, S., Naqvi, A. A., Mandal, S., & Ahuja, P. S. (1994). Phytotherapy Research, 8, 452–455.

    Article  CAS  Google Scholar 

  8. Roja, C., Heble, M. R., & Sipahimalani, A. T. (1991). Phytotherapy Research, 5, 185–187.

    Article  CAS  Google Scholar 

  9. Vitali, G., Conte, L., & Nicoletti, M. (1996). Planta Medica, 62, 287–288.

    Article  CAS  Google Scholar 

  10. Ray, S., & Jha, S. (1999). Plant Science, 146, 1–7.

    Article  CAS  Google Scholar 

  11. Rani, G., & Grover, I. S. (1999). Plant Cell, Tissue and Organ Culture, 57, 23–27.

    Article  Google Scholar 

  12. Ciddi, V. (2006). Indian Journal of Pharmaceutical Sciences, 68, 490–492.

    Article  CAS  Google Scholar 

  13. Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Biotechnology Advances, 23, 283–333.

    Article  CAS  Google Scholar 

  14. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 51, 473–497.

    Article  Google Scholar 

  15. Dubois, M., GuiUes, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  16. Santiago, L. J. M., Louro, R. P., & De Oliveira, D. E. (2000). Annals of Botany, 86, 1023–1032.

    Article  CAS  Google Scholar 

  17. Maksymiec, W., Wianowska, D., Dawidowicz, A. L., Radkiewicz, S., Mardarowicz, M., & Krupa, Z. (2005). Journal of Plant Physiology, 162, 1338–1346.

    Article  CAS  Google Scholar 

  18. Cabello-Hurtado, F., Durst, F., Jorrin, J. S. V., & Werck-Reichhart, D. (1991). Phytochemistry, 38, 918–925.

    Google Scholar 

  19. Hakamatsuka, T., Ebizuka, Y., & Sankawa, U. (1991). Phytochemistry, 30, 1481–1482.

    Article  CAS  Google Scholar 

  20. Gutierrez, M. C., Parry, A., Tena, M., Jorrin, J., & Edwards, R. (1995). Phytochemistry, 38, 1185–1191.

    Article  Google Scholar 

  21. Mueller, M. J., Brodschelm, W., Spannagl, E., & Zenk, M. H. (1993). Proceedings of the National Academy of Sciences of the United States of America, 90, 7490–7494.

    Article  CAS  Google Scholar 

  22. Wang, W., & Zhong, J. J. (2002). Journal of Bioscience and Bioengineering, 93, 48–53.

    CAS  Google Scholar 

  23. Menke, F. L. H., Parchmann, S., Mueller, M. J., Kijne, J. W., & Memelink, J. (1999). Plant Physiology, 119, 1289–1296.

    Article  CAS  Google Scholar 

  24. Nojiri, H., Sugimori, M., Yamane, H., Nishimura, Y., Yamada, A., & Shibuya, N. (1996). Plant Physiology, 110, 387–392.

    CAS  Google Scholar 

  25. Tamogami, S., Rakwal, R., & Kodama, O. (1997). FEBS Letters, 412, 61–64.

    Article  CAS  Google Scholar 

  26. Brader, G., Tas, E., & Palva, E. T. (2001). Plant Physiology, 126, 849–860.

    Article  CAS  Google Scholar 

  27. Zhao, J., & Sakai, K. (2001). Journal of Experimental Botany, 54, 647–656.

    Article  CAS  Google Scholar 

  28. Baldi, A., & Dixit, V. K. (2008). Bioresource Technology, 99, 4609–4614. DOI 10.1016/j.biortech.2007.06.061.

  29. Preisig, C. L., & Kuc, J. A. (1985). Archives of Biochemistry and Biophysics, 236, 379–389.

    Article  CAS  Google Scholar 

  30. Vaughn, S. F., & Lulai, E. C. (1992). Plant Science, 84, 91–98.

    Article  CAS  Google Scholar 

  31. Hoshino, T., Chida, M., Yamaura, T., Yoshizawa, Y., & Mizutani, J. (1994). Phytochemistry, 36, 1417–1419.

    Article  CAS  Google Scholar 

  32. Komaraiah, P., Kishor, P. B. K., Carlsson, M., Magnusson, K. E., & Mandenius, C. F. (2005). Plant Science, 168, 1337–1344.

    Article  CAS  Google Scholar 

  33. Araceli, A. C., Elda, C. M., Edmundo, L. G., & Ernestoa, G. P. (2007). Physiological and Molecular Plant Pathology, 70, 69–76.

    Article  CAS  Google Scholar 

  34. Sanz, K. M., Hernandez, X. E., & Tonn, C. E. (2000). Plant Cell Reports, 19, 821–824.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldi, A., Singh, D. & Dixit, V.K. Dual Elicitation for Improved Production of Withaferin A by Cell Suspension Cultures of Withania somnifera . Appl Biochem Biotechnol 151, 556–564 (2008). https://doi.org/10.1007/s12010-008-8231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8231-2

Keywords

Navigation