Skip to main content
Log in

Status of the application of exogenous enzyme technology for the development of natural plant resources

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Exogenous enzymes are extraneous enzymes that are not intrinsic to the subject. The exogenous enzyme industry has been rapidly developing recently. Successful application of recombinant DNA amplification, high-efficiency expression, and immobilization technology to genetically engineered bacteria provides a rich source of enzymes. Amylase, cellulase, protease, pectinase, glycosidase, tannase, and polyphenol oxidase are among the most widely used such enzymes. Currently, the application of exogenous enzyme technology in the development of natural plant resources mainly focuses on improving the taste and flavor of the product, enriching the active ingredient contents, deriving and transforming the structure of a chosen compound, and enhancing the biological activity and utilization of the functional ingredient. In this review, we discuss the application status of exogenous enzyme technology for the development of natural plant resources using typical natural active ingredients from plant, such as resveratrol, steviosides, catechins, mogrosides, and ginsenosides, as examples, to provide basis for further exploitation and utilization of exogenous enzyme technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351. https://doi.org/10.1016/s0958-1669(02)00328-2

    Article  CAS  PubMed  Google Scholar 

  2. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39(2):235–251. https://doi.org/10.1016/j.enzmictec.2005.10.016

    Article  CAS  Google Scholar 

  3. Wright GD (2019) Unlocking the potential of natural products in drug discovery. Microb Biotechnol 12(1):55–57. https://doi.org/10.1111/1751-7915.13351

    Article  CAS  PubMed  Google Scholar 

  4. Cragg GM, Grothaus PG, Newman DJ (2019) Impact of natural products on developing new anti-cancer agents. Chem Rev 109(7):3012–3043. https://doi.org/10.1021/cr900019j

    Article  CAS  Google Scholar 

  5. Rao T, Tan Z, Peng J et al (2019) The pharmacogenetics of natural products: a pharmacokinetic and pharmacodynamic perspective. Pharmacol Res 146:104283. https://doi.org/10.1016/j.phrs.2019.104283

    Article  CAS  PubMed  Google Scholar 

  6. Newman DJ, Cragg GM (2006) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477. https://doi.org/10.1021/np068054v

    Article  CAS  Google Scholar 

  7. Cragg GM (1830) Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 6:3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008

    Article  CAS  Google Scholar 

  8. Sharma A, Tewari R, Rana SS et al (2016) Cellulases: classification, methods of determination and industrial applications. Appl Biochem Biotechnol 179(8):1346–1380. https://doi.org/10.1007/s12010-016-2070-3

    Article  CAS  PubMed  Google Scholar 

  9. Wakai S, Nakashima N, Ogino C et al (2019) Modified expression of multi-cellulases in a filamentous fungus Aspergillus oryzae. Bioresour Technol 276:146–153. https://doi.org/10.1016/j.biortech.2018.12.117

    Article  CAS  PubMed  Google Scholar 

  10. Patil NP, Patil KP, Chaudhari BL et al (2012) Production, purification of exo-polygalacturonase from soil isolate Paecilomyces variotii NFCCI 1769 and its application. Ind J Microbiol 52(2):240–246. https://doi.org/10.1007/s12088-011-0162-x

    Article  CAS  Google Scholar 

  11. Rehman HU, Qader SA, Aman A (2012) Polygalacturonase: production of pectin depolymerising enzyme from Bacillus licheniformis KIBGE IB-21. Carbohydr Polym 90(1):387–391. https://doi.org/10.1016/j.carbpol.2012.05.055

    Article  CAS  PubMed  Google Scholar 

  12. Goswami D, Basu JK, De S (2013) Lipase applications in oil hydrolysis with a case study on castor oil: a review. Crit Rev Biotechnol 33(1):81–96. https://doi.org/10.3109/07388551.2012.672319

    Article  CAS  PubMed  Google Scholar 

  13. Javed S, Azeem F, Hussain S et al (2018) Bacterial lipases: a review on purification and characterization. Prog Biophys Mol Biol 132:23–34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014

    Article  CAS  PubMed  Google Scholar 

  14. Sarmah N, Revathi D, Sheelu G et al (2018) Recent advances on sources and industrial applications of lipases. Biotechnol Prog 34(1):5–28. https://doi.org/10.1002/btpr.2581

    Article  CAS  PubMed  Google Scholar 

  15. Contesini FJ, Melo RRd, Sato HH (2017) An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol 38(3):321–334. https://doi.org/10.1080/07388551.2017.1354354

    Article  CAS  PubMed  Google Scholar 

  16. Rana N, Walia A, Gaur A (2013) α-Amylases from microbial sources and its potential applications in various industries. Natl Acad Sci Lett 36(1):9–17. https://doi.org/10.1007/s40009-012-0104-0

    Article  CAS  Google Scholar 

  17. Yan S, Wu G (2017) Bottleneck in secretion of alpha-amylase in Bacillus subtilis. Microb Cell Fact 16(1):124. https://doi.org/10.1186/s12934-017-0738-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chandini SK, Rao LJ, Gowthaman MK et al (2011) Enzymatic treatment to improve the quality of black tea extracts. Food Chem 127(3):1039–1045. https://doi.org/10.1016/j.foodchem.2011.01.078

    Article  CAS  PubMed  Google Scholar 

  19. Kumar CS, Subramanian R, Rao LJ (2013) Application of enzymes in the production of RTD black tea beverages: a review. Crit Rev Food Sci Nutr 53(2):180–197. https://doi.org/10.1080/10408398.2010.520098

    Article  CAS  PubMed  Google Scholar 

  20. Giardina P, Faraco V, Pezzella C et al (2010) Laccases: a never-ending story. Cell Mol Life Sci 67(3):369–385. https://doi.org/10.1007/s00018-009-0169-1

    Article  CAS  PubMed  Google Scholar 

  21. Kunamneni A, Camarero S, Garcia-Burgos C et al (2008) Engineering and applications of fungal laccases for organic synthesis. Microb Cell Fact 7:32. https://doi.org/10.1186/1475-2859-7-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Queiroz C, Mendes Lopes ML, Fialho E et al (2008) Polyphenol Oxidase: Characteristics and Mechanisms of Browning Control. Food Rev Int 24(4):361–375. https://doi.org/10.1080/87559120802089332

    Article  CAS  Google Scholar 

  23. Miron TL, Herrero M, Ibanez E (2013) Enrichment of antioxidant compounds from lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-assisted extraction. J Chromatogr A 1288:1–9. https://doi.org/10.1016/j.chroma.2013.02.075

    Article  CAS  PubMed  Google Scholar 

  24. Chen S, Xing XH, Huang JJ et al (2011) Enzyme-assisted extraction of flavonoids from Ginkgo biloba leaves: improvement effect of flavonol transglycosylation catalyzed by Penicillium decumbens cellulase. Enzyme Microb Technol 48(1):100–105. https://doi.org/10.1016/j.enzmictec.2010.09.017

    Article  CAS  PubMed  Google Scholar 

  25. Song YR, Sung SK, Jang M et al (2018) Enzyme-assisted extraction, chemical characteristics, and immunostimulatory activity of polysaccharides from Korean ginseng (Panax ginseng Meyer). Int J Biol Macromol 116:1089–1097. https://doi.org/10.1016/j.ijbiomac.2018.05.132

    Article  CAS  PubMed  Google Scholar 

  26. Huynh NT, Smagghe G, Gonzales GB et al (2014) Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica oleracea L. var. botrytis) outer leaves. J Agric Food Chem 62(30):7468–7476. https://doi.org/10.1021/jf502543c

    Article  CAS  PubMed  Google Scholar 

  27. Zhu Z, Li S, He J et al (2018) Enzyme-assisted extraction of polyphenol from edible lotus (Nelumbo nucifera) rhizome knot: ultra-filtration performance and HPLC-MS(2) profile. Food Res Int 111:291–298. https://doi.org/10.1016/j.foodres.2018.05.047

    Article  CAS  PubMed  Google Scholar 

  28. Ngamwonglumlert L, Devahastin S, Chiewchan N (2017) Natural colorants: pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit Rev Food Sci Nutr 57(15):3243–3259. https://doi.org/10.1080/10408398.2015.1109498

    Article  CAS  PubMed  Google Scholar 

  29. Song YR, Sung SK, Shin EJ et al (2018) The effect of pectinase-assisted extraction on the physicochemical and biological properties of polysaccharides from Aster scaber. Int J Mol Sci. https://doi.org/10.3390/ijms19092839

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wijesinghe WA, Jeon YJ (2012) Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: a review. Fitoterapia 83(1):6–12. https://doi.org/10.1016/j.fitote.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  31. Marić M, Grassino AN, Zhu Z et al (2018) An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci Technol 76:28–37. https://doi.org/10.1016/j.tifs.2018.03.022

    Article  CAS  Google Scholar 

  32. Swer TL, Mukhim C, Bashir K et al (2018) Optimization of enzyme aided extraction of anthocyanins from Prunus nepalensis L. Lwt 91:382–390. https://doi.org/10.1016/j.lwt.2018.01.043

    Article  CAS  Google Scholar 

  33. Fu YJ, Liu W, Zu YG et al (2008) Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Food Chem 111(2):508–512. https://doi.org/10.1016/j.foodchem.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  34. Prokopov T, Nikolova M, Dobrev G et al (2017) Enzyme-assisted extraction of carotenoids from Bulgarian tomato peels. Acta Aliment 46(1):84–91. https://doi.org/10.1556/066.2017.46.1.11

    Article  CAS  Google Scholar 

  35. Zu Y, Wang Y, Fu Y et al (2009) Enzyme-assisted extraction of paclitaxel and related taxanes from needles of Taxus chinensis. Sep Purif Technol 68(2):238–243. https://doi.org/10.1016/j.seppur.2009.05.009

    Article  CAS  Google Scholar 

  36. Abbassi A, Mahmoudi H, Zaouali W et al (2018) Enzyme-aided release of bioactive compounds from coriander (Coriandrum sativum L.) seeds and their residue by-products and evaluation of their antioxidant activity. J Food Sci Technol 55(8):3065–3076. https://doi.org/10.1007/s13197-018-3229-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boulila A, Hassen I, Haouari L et al (2015) Enzyme-assisted extraction of bioactive compounds from bay leaves (Laurus nobilis L.). Ind Crops Prod 74:485–493. https://doi.org/10.1016/j.indcrop.2015.05.050

    Article  CAS  Google Scholar 

  38. Hosni K, Hassen I, Chaâbane H et al (2013) Enzyme-assisted extraction of essential oils from thyme (Thymus capitatus L.) and rosemary (Rosmarinus officinalis L.): impact on yield, chemical composition and antimicrobial activity. Ind Crops Prod 47:291–299. https://doi.org/10.1016/j.indcrop.2013.03.023

    Article  CAS  Google Scholar 

  39. Gai QY, Jiao J, Wei FY et al (2013) Enzyme-assisted aqueous extraction of oil from Forsythia suspense seed and its physicochemical property and antioxidant activity. Ind Crops Prod 51:274–278. https://doi.org/10.1016/j.indcrop.2013.09.014

    Article  CAS  Google Scholar 

  40. Wu S, Gong G, Wang Y et al (2013) Response surface optimization of enzyme-assisted extraction polysaccharides from Dictyophora indusiata. Int J Biol Macromol 61:63–68. https://doi.org/10.1016/j.ijbiomac.2013.06.036

    Article  CAS  PubMed  Google Scholar 

  41. Li H, Chen X, Xiong L et al (2019) Stepwise enzymatic hydrolysis of alkaline oxidation treated sugarcane bagasse for the co-production of functional xylo-oligosaccharides and fermentable sugars. Bioresour Technol 275:345–351. https://doi.org/10.1016/j.biortech.2018.12.063

    Article  CAS  PubMed  Google Scholar 

  42. Wang S, Dong X, Tong J (2013) Optimization of enzyme-assisted extraction of polysaccharides from alfalfa and its antioxidant activity. Int J Biol Macromol 62:387–396. https://doi.org/10.1016/j.ijbiomac.2013.09.029

    Article  CAS  PubMed  Google Scholar 

  43. Bayne L, Ulijn RV, Halling PJ (2013) Effect of pore size on the performance of immobilised enzymes. Chem Soc Rev 42(23):9000–9010. https://doi.org/10.1039/c3cs60270b

    Article  CAS  PubMed  Google Scholar 

  44. DiCosimo R, McAuliffe J, Poulose AJ et al (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42(15):6437–6474. https://doi.org/10.1039/c3cs35506c

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y (2015) Enhanced activity of immobilized or chemically modified enzymes. ACS Catal. https://doi.org/10.1021/acscatal.5b00996

    Article  Google Scholar 

  46. Xie T, Wang A, Huang L et al (2009) Recent advance in the support and technology used in enzyme immobilization. Afr J Biotechnol 8(19):4724–4733. https://doi.org/10.1016/j.enzmictec.2009.06.004

    Article  CAS  Google Scholar 

  47. Singh AN, Singh S, Suthar N et al (2011) Glutaraldehyde-activated chitosan matrix for immobilization of a novel cysteine protease, procerain B. J Agric Food Chem 59(11):6256–6262. https://doi.org/10.1021/jf200472x

    Article  CAS  PubMed  Google Scholar 

  48. Zhou J (2010) Immobilization of cellulase on a reversibly soluble-insoluble support: properties and application. J Agric Food Chem 58(11):6741–6746. https://doi.org/10.1021/jf100759c

    Article  CAS  PubMed  Google Scholar 

  49. Natividad O, Manuel PM, Pilar MC et al (2009) Neutrase immobilization on alginate-glutaraldehyde beads by covalent attachment. J Agric Food Chem 57(1):109–115. https://doi.org/10.1021/jf8015738

    Article  CAS  Google Scholar 

  50. Gong W, Ran Z, Ye F et al (2017) Lignin from bamboo shoot shells as an activator and novel immobilizing support for α-amylase. Food Chem 228:455–462. https://doi.org/10.1016/j.foodchem.2017.02.017

    Article  CAS  PubMed  Google Scholar 

  51. Park S, Kim SH, Kim JH et al (2015) Application of cellulose/lignin hydrogel beads as novel supports for immobilizing lipase. J Mol Catal B 119:33–39. https://doi.org/10.1016/j.molcatb.2015.05.014

    Article  CAS  Google Scholar 

  52. Bayramoglu G, Senkal BF, Yilmaz M et al (2011) Immobilization and stabilization of papain on poly(hydroxyethyl methacrylate–ethylenglycol dimethacrylate) beads grafted with epoxy functional polymer chains via surface-initiated-atom transfer radical polymerization (SI-ATRP). Bioresour Technol 102(21):9833–9837.https://doi.org/10.1016/j.biortech.2011.08.042

    Article  CAS  PubMed  Google Scholar 

  53. Bayramoğlu G, Yılmaz M, Şenel AÜ et al (2008) Preparation of nanofibrous polymer grafted magnetic poly(GMA-MMA)-g-MAA beads for immobilization of trypsin via adsorption. Biochem Eng J 40(2):262–274. https://doi.org/10.1016/j.bej.2007.12.013

    Article  CAS  Google Scholar 

  54. Misson M, Zhang H, Jin B (2015) Nanobiocatalyst advancements and bioprocessing applications. J R Soc Interface 12(102):20140891. https://doi.org/10.1098/rsif.2014.0891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ding S, Cargill AA, Medintz IL et al (2015) Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr Opin Biotechnol 34:242–250. https://doi.org/10.1016/j.copbio.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  56. Li R, Fu G, Liu C et al (2018) Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion. Int J Biol Macromol 114:1134–1143. https://doi.org/10.1016/j.ijbiomac.2018.03.077

    Article  CAS  PubMed  Google Scholar 

  57. Zhang H, Xun E, Wang J et al (2012) Immobilization of laccase for oxidative coupling of trans-resveratrol and its derivatives. Int J Mol Sci 13(5):5998–6008. https://doi.org/10.3390/ijms13055998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Akio N, Misa IO, Noriko I et al (2008) A novel glucosylation enzyme: molecular cloning, expression, and characterization of Trichoderma viride JCM22452 alpha-amylase and enzymatic synthesis of some flavonoid monoglucosides and oligoglucosides. J Agric Food Chem 56(24):12016–12024. https://doi.org/10.1021/jf801712g

    Article  CAS  Google Scholar 

  59. Chen H, Deng Q, Ji X et al (2016) Glucose oxidase-assisted extraction of resveratrol from Japanese knotweed (Fallopia japonica). New J Chem 40(9):8131–8140. https://doi.org/10.1039/c6nj01294a

    Article  CAS  Google Scholar 

  60. Chen M, Li D, Gao Z et al (2014) Enzymatic transformation of polydatin to resveratrol by piceid-beta-d-glucosidase from Aspergillus oryzae. Bioprocess Biosyst Eng 37(7):1411–1416. https://doi.org/10.1007/s00449-013-1113-1

    Article  CAS  PubMed  Google Scholar 

  61. Todaro A, Palmeri R, Barbagallo RN et al (2008) Increase of trans-resveratrol in typical sicilian wine using β-glucosidase from various sources. Food Chem 107(4):1570–1575. https://doi.org/10.1016/j.foodchem.2007.09.075

    Article  CAS  Google Scholar 

  62. Mai Z, Su H, Zhang S (2016) Characterization of a metagenome-derived β-glucosidase and its application in conversion of polydatin to resveratrol. Catalysts 6(3):35. https://doi.org/10.3390/catal6030035

    Article  CAS  Google Scholar 

  63. Kuo CH, Chen BY, Liu YC et al (2016) Production of resveratrol by piceid deglycosylation using cellulase. Catalysts 6(3):32. https://doi.org/10.3390/catal6030032

    Article  CAS  Google Scholar 

  64. Zhou L, Li S, Zhang T et al (2016) Properties of a novel polydatin-beta-d-glucosidase from Aspergillus niger SK34.002 and its application in enzymatic preparation of resveratrol. J Sci Food Agric 96(7):2588–2595. https://doi.org/10.1002/jsfa.7465

    Article  CAS  PubMed  Google Scholar 

  65. Kuo HP, Wang R, Huang CY et al (2018) Characterization of an extracellular beta-glucosidase from Dekkera bruxellensis for resveratrol production. J Food Drug Anal 26(1):163–171. https://doi.org/10.1016/j.jfda.2016.12.016

    Article  CAS  PubMed  Google Scholar 

  66. La Torre GL, Laganà G, Bellocco E et al (2004) Improvement on enzymatic hydrolysis of resveratrol glucosides in wine. Food Chem 85(2):259–266. https://doi.org/10.1016/j.foodchem.2003.06.019

    Article  CAS  Google Scholar 

  67. Chen F, Zhang X, Du X et al (2016) A new approach for obtaining trans-resveratrol from tree peony seed oil extracted residues using ionic liquid-based enzymatic hydrolysis in situ extraction. Sep Purif Technol 170:294–305. https://doi.org/10.1016/j.seppur.2016.06.056

    Article  CAS  Google Scholar 

  68. Lin JA, Kuo CH, Chen BY et al (2016) A novel enzyme-assisted ultrasonic approach for highly efficient extraction of resveratrol from Polygonum cuspidatum. Ultrason Sonochem 32:258–264. https://doi.org/10.1016/j.ultsonch.2016.03.018

    Article  CAS  PubMed  Google Scholar 

  69. Kuo CH, Hsiao FW, Chen JH et al (2013) Kinetic aspects of ultrasound-accelerated lipase catalyzed acetylation and optimal synthesis of 4ʹ-acetoxyresveratrol. Ultrason Sonochem 20(1):546–552. https://doi.org/10.1016/j.ultsonch.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  70. Wang Z, Zhang Y, Zheng L et al (2018) Regioselective acylation of resveratrol catalyzed by lipase under microwave. Green Chem Lett Rev 11(3):312–317. https://doi.org/10.1080/17518253.2018.1500646

    Article  CAS  Google Scholar 

  71. Torres P, Poveda A, Jimenez-Barbero J et al (2010) Regioselective lipase-catalyzed synthesis of 3-o-acyl derivatives of resveratrol and study of their antioxidant properties. J Agric Food Chem 58(2):807–813. https://doi.org/10.1021/jf903210q

    Article  CAS  PubMed  Google Scholar 

  72. Nguyen TT, Kim SB, Kim NM et al (2016) Production of steviol from steviol glucosides using beta-glycosidase from Sulfolobus solfataricus. Enzyme Microb Technol 93–94:157–165. https://doi.org/10.1016/j.enzmictec.2016.08.013

    Article  CAS  PubMed  Google Scholar 

  73. Wang Y, Chen L, Li Y et al (2016) Efficient enzymatic production of rebaudioside A from stevioside. Biosci Biotechnol Biochem 80(1):67–73. https://doi.org/10.1080/09168451.2015.1072457

    Article  CAS  PubMed  Google Scholar 

  74. Wan HD, Xia YM (2015) Enzymatic transformation of stevioside using a beta-galactosidase from Sulfolobus sp. Food Funct 6(10):3291–3295. https://doi.org/10.1039/c5fo00631g

    Article  CAS  PubMed  Google Scholar 

  75. Singla R, Jaitak V (2016) Synthesis of rebaudioside A from stevioside and their interaction model with hTAS2R4 bitter taste receptor. Phytochemistry 125:106–111. https://doi.org/10.1016/j.phytochem.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  76. Adari BR, Alavala S, George SA et al (2016) Synthesis of rebaudioside-A by enzymatic transglycosylation of stevioside present in the leaves of Stevia rebaudiana Bertoni. Food Chem 200:154–158. https://doi.org/10.1016/j.foodchem.2016.01.033

    Article  CAS  PubMed  Google Scholar 

  77. Puri M, Sharma D, Barrow CJ et al (2012) Optimisation of novel method for the extraction of steviosides from Stevia rebaudiana leaves. Food Chem 132(3):1113–1120. https://doi.org/10.1016/j.foodchem.2011.11.063

    Article  CAS  PubMed  Google Scholar 

  78. Te Poele EM, Devlamynck T, Jager M et al (2018) Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste. Sci Rep 8(1):1516. https://doi.org/10.1038/s41598-018-19622-5

    Article  CAS  Google Scholar 

  79. Kochikyan VT, Markosyan AA, Abelyan LA et al (2006) Combined enzymatic modification of stevioside and rebaudioside A. Appl Biochem Microbiol 42(1):31–37. https://doi.org/10.1134/s0003683806010030

    Article  CAS  Google Scholar 

  80. Li S, Li W, Xiao QY et al (2013) Transglycosylation of stevioside to improve the edulcorant quality by lower substitution using cornstarch hydrolyzate and CGTase. Food Chem 138(2–3):2064–2069. https://doi.org/10.1016/j.foodchem.2012.10.124

    Article  CAS  PubMed  Google Scholar 

  81. Ye F, Yang R, Hua X et al (2013) Modification of stevioside using transglucosylation activity of Bacillus amyloliquefaciens α-amylase to reduce its bitter aftertaste. LWT-Food Sci Technol 51(2):524–530. https://doi.org/10.1016/j.lwt.2012.12.005

    Article  CAS  Google Scholar 

  82. Yu X, Yang J, Li B et al (2015) High efficiency transformation of stevioside into a single mono-glycosylated product using a cyclodextrin glucanotransferase from Paenibacillus sp. CGMCC 5316. World J Microbiol Biotechnol 31(12):1983–1991. https://doi.org/10.1007/s11274-015-1947-6

    Article  CAS  PubMed  Google Scholar 

  83. Xu ZW, Li YQ, Wang YH et al (2009) Production of β-fructofuranosidase by Arthrobacter sp. and its application in the modification of stevioside and rebaudioside A. Food Technol Biotechnol 47(2):137–143

    CAS  Google Scholar 

  84. Ko JA, Kim YM, Ryu YB et al (2012) Mass production of rubusoside using a novel stevioside-specific beta-glucosidase from Aspergillus aculeatus. J Agric Food Chem 60(24):6210–6216. https://doi.org/10.1021/jf300531e

    Article  CAS  PubMed  Google Scholar 

  85. Wan HD, Tao GJ, Kim D et al (2012) Enzymatic preparation of a natural sweetener rubusoside from specific hydrolysis of stevioside with β-galactosidase from Aspergillus sp. J Mol Catal B 82:12–17. https://doi.org/10.1016/j.molcatb.2012.05.018

    Article  CAS  Google Scholar 

  86. Nguyen TT, Jung SJ, Kang HK et al (2014) Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide. Enzyme Microbiol Technol 64–65:38–43. https://doi.org/10.1016/j.enzmictec.2014.07.001

    Article  CAS  Google Scholar 

  87. Wang Z, Wang J, Jiang M et al (2015) Selective production of rubusoside from stevioside by using the sophorose activity of β-glucosidase from Streptomyces sp. GXT6. Appl Microbiol Biotechnol 99(22):9663. https://doi.org/10.1007/s00253-015-6802-z

    Article  CAS  PubMed  Google Scholar 

  88. Roberto BS, Macedo GA, Macedo JA et al (2016) Immobilized tannase treatment alters polyphenolic composition in teas and their potential anti-obesity and hypoglycemic activities in vitro. Food Funct 7(9):3920–3932. https://doi.org/10.1039/c6fo00373g

    Article  CAS  PubMed  Google Scholar 

  89. Kim JH, Pan JH, Heo W et al (2010) Effects of cellulase from Aspergillus niger and solvent pretreatments on the extractability of organic green tea waste. J Agric Food Chem 58(19):10747–10751. https://doi.org/10.1021/jf102346p

    Article  CAS  PubMed  Google Scholar 

  90. Zhang YN, Yin JF, Chen JX et al (2016) Improving the sweet aftertaste of green tea infusion with tannase. Food Chem 192:470–476. https://doi.org/10.1016/j.foodchem.2015.07.046

    Article  CAS  PubMed  Google Scholar 

  91. Ni H, Chen F, Jiang ZD et al (2015) Biotransformation of tea catechins using Aspergillus niger tannase prepared by solid state fermentation on tea byproduct. LWT-Food Sci Technol 60(2):1206–1213. https://doi.org/10.1016/j.lwt.2014.09.010

    Article  CAS  Google Scholar 

  92. Lu MJ, Chu SC, Yan L et al (2009) Effect of tannase treatment on protein–tannin aggregation and sensory attributes of green tea infusion. LWT Food Sci Technol 42(1):338–342. https://doi.org/10.1016/j.lwt.2008.05.015

    Article  CAS  Google Scholar 

  93. Xia G, Hong S, Liu S (2014) Simultaneous preparation of naturally abundant and rare catechins by tannase-mediated biotransformation combining high speed counter current chromatography. Food Chem 151:380–384. https://doi.org/10.1016/j.foodchem.2013.11.090

    Article  CAS  PubMed  Google Scholar 

  94. Verloop AJ, Gruppen H, Bisschop R et al (2016) Altering the phenolics profile of a green tea leaves extract using exogenous oxidases. Food Chem 196:1197–1206. https://doi.org/10.1016/j.foodchem.2015.10.068

    Article  CAS  PubMed  Google Scholar 

  95. Yabuki C, Yagi K, Nanjo F (2017) Highly efficient synthesis of theaflavins by tyrosinase from mushroom and its application to theaflavin related compounds. Process Biochem 55:61–69. https://doi.org/10.1016/j.procbio.2017.02.002

    Article  CAS  Google Scholar 

  96. Lee Y, Lin Z, Du G et al (2015) The fungal laccase-catalyzed oxidation of EGCG and the characterization of its products. J Sci Food Agric 95(13):2686–2692. https://doi.org/10.1002/jsfa.7003

    Article  CAS  PubMed  Google Scholar 

  97. Liu B, Yan W (2019) Lipophilization of EGCG and effects on antioxidant activities. Food Chem 272:663–669. https://doi.org/10.1016/j.foodchem.2018.08.086

    Article  CAS  PubMed  Google Scholar 

  98. Zhu S, Li Y, Cy Ma et al (2013) Optimization of lipase-catalyzed synthesis of acetylated EGCG by response surface methodology. J Mol Catal B 97:87–94. https://doi.org/10.1016/j.molcatb.2013.08.002

    Article  CAS  Google Scholar 

  99. Zhu S, Li Y, Cy Ma et al (2017) Lipase catalyzed acetylation of EGCG, a lipid soluble antioxidant, and preparative purification by high-speed counter-current chromatography (HSCCC). Sep Purif Technol 185:33–40. https://doi.org/10.1016/j.seppur.2017.04.026

    Article  CAS  Google Scholar 

  100. Ning W, Wang S, Liu D et al (2016) Potent effects of peracetylated (-)-epigallocatechin-3-gallate against hydrogen peroxide-induced damage in human epidermal melanocytes via attenuation of oxidative stress and apoptosis. Clin Exp Dermatol 41(6):616–624. https://doi.org/10.1111/ced.12855

    Article  CAS  PubMed  Google Scholar 

  101. Li D, Ikeda T, Huang Y et al (2007) Seasonal variation of mogrosides in Lo Han Kuo (Siraitia grosvenori) fruits. J Nat Med Tokyo 61(3):307–312. https://doi.org/10.1007/s11418-006-0130-7

    Article  CAS  Google Scholar 

  102. Liu C, Dai L, Liu Y et al (2018) Pharmacological activities of mogrosides. Future Med Chem 10(3):2017–2255. https://doi.org/10.4155/fmc-2017-0255

    Article  CAS  Google Scholar 

  103. Matsumoto K, Kasai R, Ohtani K et al (2008) Minor cucurbitane-glycosides from fruits of Siraitia grosvenori (Cucurbitaceae). Chem Pharm Bull 38(7):2030–2032. https://doi.org/10.1248/cpb.38.2030

    Article  Google Scholar 

  104. Pawar RS, Krynitsky AJ, Rader JI (2013) Sweeteners from plants–with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Anal Bioanal Chem 405(13):4397–4407. https://doi.org/10.1007/s00216-012-6693-0

    Article  CAS  PubMed  Google Scholar 

  105. Girisuta B, Danon B, Manurung R et al (2008) Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresour Technol 99(17):8367–8375. https://doi.org/10.1016/j.biortech.2008.02.045

    Article  CAS  PubMed  Google Scholar 

  106. Wang R, Lin PY, Huang ST et al (2015) Hyperproduction of beta-glucanase exg1 promotes the bioconversion of mogrosides in Saccharomyces cerevisiae mutants defective in mannoprotein deposition. J Agric Food Chem 63(47):10271–10279. https://doi.org/10.1021/acs.jafc.5b03909

    Article  CAS  PubMed  Google Scholar 

  107. Chiu CH, Wang R, Lee CC et al (2013) Biotransformation of mogrosides from Siraitia grosvenorii swingle by Saccharomyces cerevisiae. J Agric Food Chem 61(29):7127–7134. https://doi.org/10.1021/jf402058p

    Article  CAS  PubMed  Google Scholar 

  108. Wang HT, Yang JT, Chen KI et al (2019) Hydrolyzation of mogrosides: immobilized beta-glucosidase for mogrosides deglycosylation from Lo Han Kuo. Food Sci Nutr 7(2):834–843. https://doi.org/10.1002/fsn3.932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang R, Chen YC, Lai YJ et al (2019) Dekkera bruxellensis, a beer yeast that specifically bioconverts mogroside extracts into the intense natural sweetener siamenoside I. Food Chem 276:43–49. https://doi.org/10.1016/j.foodchem.2018.09.163

    Article  CAS  PubMed  Google Scholar 

  110. Murata Y, Ogawa T, Suzuki YA (2010) Digestion and absorption of Siraitia grosvenori triterpenoids in the rat. Biosci Biotech Biochem 74(3):673–676. https://doi.org/10.1271/bbb.90832

    Article  CAS  Google Scholar 

  111. Jin Y, Hofseth AB, Cui X et al (2010) American ginseng suppresses colitis through p53-mediated apoptosis of inflammatory cells. Cancer Prev Res (Phila) 3(3):339–347. https://doi.org/10.1158/1940-6207.CAPR-09-0116

    Article  PubMed Central  Google Scholar 

  112. Qi LW, Wang CZ, Yuan CS (2010) American ginseng: potential structure–function relationship in cancer chemoprevention. Biochem Pharmacol 80(7):947–954. https://doi.org/10.1016/j.bcp.2010.06.023

    Article  CAS  PubMed  Google Scholar 

  113. Yu L, Chen Y, Shi J et al (2019) Biosynthesis of rare 20(R)-protopanaxadiol/protopanaxatriol type ginsenosides through Escherichia coli engineered with uridine diphosphate glycosyltransferase genes. J Ginseng Res 43(1):116–124. https://doi.org/10.1016/j.jgr.2017.09.005

    Article  PubMed  Google Scholar 

  114. Yang WZ, Hu Y, Wu WY et al (2014) Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. Phytochemistry 106:7–24. https://doi.org/10.1016/j.phytochem.2014.07.012

    Article  CAS  PubMed  Google Scholar 

  115. Yu S, Zhou X, Li F et al (2017) Microbial transformation of ginsenoside Rb1, Re and Rg1 and its contribution to the improved anti-inflammatory activity of ginseng. Sci Rep 7(1):138. https://doi.org/10.1038/s41598-017-00262-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sunwoo HH, Gujral N, Huebl AC et al (2013) Application of high hydrostatic pressure and enzymatic hydrolysis for the extraction of ginsenosides from fresh ginseng root (Panax ginseng C. A. Myer). Food Bioprocess Technol 7(5):1246–1254. https://doi.org/10.1007/s11947-013-1234-1

    Article  CAS  Google Scholar 

  117. Palaniyandi SA, Suh JW, Yang SH (2017) Preparation of Ginseng extract with enhanced levels of ginsenosides Rg1 and Rb1 using high hydrostatic pressure and polysaccharide hydrolases. Pharmacogn Mag 13(Suppl 1):S142–S147. https://doi.org/10.4103/0973-1296.203992

    Article  PubMed  PubMed Central  Google Scholar 

  118. Mona Abdel T, Ute B, Michael K et al (2003) Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 31(8):1065–1071. https://doi.org/10.1124/dmd.31.8.1065

    Article  Google Scholar 

  119. Zheng MM, Xu FX, Li YJ et al (2017) Study on transformation of ginsenosides in different methods. Biomed Res Int 2017:8601027. https://doi.org/10.1155/2017/8601027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang P, Wei W, Ye W et al (2019) Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discov 5:5. https://doi.org/10.1038/s41421-018-0075-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wan Hd, Li D (2015) Highly efficient biotransformation of ginsenoside Rb1 and Rg3 using β-galactosidase from Aspergillus sp. RSC Adv 5(96):78874–78879. https://doi.org/10.1039/c5ra11519a

    Article  CAS  Google Scholar 

  122. Dai L, Liu C, Li J et al (2018) One-pot synthesis of ginsenoside Rh2 and bioactive unnatural ginsenoside by coupling promiscuous glycosyltransferase from Bacillus subtilis 168 to sucrose synthase. J Agric Food Chem 66(11):2830–2837. https://doi.org/10.1021/acs.jafc.8b00597

    Article  CAS  PubMed  Google Scholar 

  123. Zhuang Y, Yang GY, Chen X et al (2017) Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme. Metab Eng 42:25–32. https://doi.org/10.1016/j.ymben.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  124. Chang KH, Jee HS, Lee NK et al (2009) Optimization of the enzymatic production of 20(S)-ginsenoside Rg(3) from white ginseng extract using response surface methodology. N Biotechnol 26(3–4):181–186. https://doi.org/10.1016/j.nbt.2009.08.011

    Article  CAS  PubMed  Google Scholar 

  125. Fu Y (2019) Biotransformation of ginsenoside Rb1 to Gyp-XVII and minor ginsenoside Rg3 by endophytic bacterium Flavobacterium sp. GE 32 isolated from Panax ginseng. Lett Appl Microbiol 68(2):134–141. https://doi.org/10.1111/lam.13090

    Article  CAS  PubMed  Google Scholar 

  126. Cheng LQ, Na JR, Bang MH et al (2008) Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 69(1):218–224. https://doi.org/10.1016/j.phytochem.2007.06.035

    Article  CAS  PubMed  Google Scholar 

  127. Quan LH, Wang C, Jin Y et al (2013) Isolation and characterization of novel ginsenoside-hydrolyzing;glycosidase from Microbacterium esteraromaticum that transforms;ginsenoside Rb2 to rare ginsenoside 20(S)-Rg3. Antonie Leeuw Int J G 104(1):129–137. https://doi.org/10.1007/s10482-013-9933-1

    Article  CAS  Google Scholar 

  128. Xiao J, Chen D, Lin XX et al (2016) Screening of drug metabolizing enzymes for the ginsenoside compound K in vitro: an efficient anti-cancer substance originating from Panax ginseng. PLoS ONE 11(2):e0147183. https://doi.org/10.1371/journal.pone.0147183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kim MJ, Upadhyaya J, Yoon MS et al (2018) Highly regioselective biotransformation of ginsenoside Rb2 into compound Y and compound K by beta-glycosidase purified from Armillaria mellea mycelia. J Ginseng Res 42(4):504–511. https://doi.org/10.1016/j.jgr.2017.07.001

    Article  PubMed  Google Scholar 

  130. Duan Z, Zhu C, Shi J et al (2018) High efficiency production of ginsenoside compound K by catalyzing ginsenoside Rb1 using snailase. Chin J Chem Eng 26(7):1591–1597. https://doi.org/10.1016/j.cjche.2018.02.004

    Article  CAS  Google Scholar 

  131. Hou J, Xue J, Zhao X et al (2018) Octyl ester of ginsenoside compound K as novel anti-hepatoma compound: synthesis and evaluation on murine H22 cells in vitro and in vivo. Chem Biol Drug Des 91(4):951–956. https://doi.org/10.1111/cbdd.13153

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailing Liu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Zhou, S., Liu, C. et al. Status of the application of exogenous enzyme technology for the development of natural plant resources. Bioprocess Biosyst Eng 44, 429–442 (2021). https://doi.org/10.1007/s00449-020-02463-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02463-w

Keywords

Navigation