Skip to main content
Log in

Antioxidant compounds extracted from Diaporthe schini using supercritical CO2 plus cosolvent

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Endophytic fungi have been highlight in the production of secondary metabolites with different bioactive properties, such as in the production of the antioxidant compounds. Therefore, the objective of this work was the extraction of the antioxidant compounds from the biomass of Diaporthe schini using supercritical carbon dioxide (CO2) without and with ethanol as cosolvent. The biomass was produced by submerged fermentation and the parameters evaluated in the extraction process were: pressure (150–250 bar), temperature (40–60 ºC) and cosolvent [biomass: cosolvent ratio, 1:0, 1:0.75 and 1:1.5 (w/v)]. Extraction yield, antioxidant activity and chemical composition of the extracts were determined. The highest extraction yield (3.24 wt.%) and the best antioxidant activity against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (96.62%) were obtained at 40 ºC, 250 bar and biomass:cosolvent ratio of 1:1.5 (w/v). The chemical compounds 1,4-diaza-2,5-dioxo-3-isobutyl bicyclo[4.3.0]nonane and benzeneethanol identified in GC/MS could be responsible for the antioxidant activity found in this study.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lupatini M, Jacques RJS, Antoniolli ZI et al (2013) Land-use change and soil type are drivers of fungal and archaeal communities in the Pampa biome. World J Microbiol Biotechnol 29:223–233. https://doi.org/10.1007/s11274-012-1174-3

    Article  CAS  PubMed  Google Scholar 

  2. de Souza ARC, Baldoni DB, Lima J et al (2017) Selection, isolation, and identification of fungi for bioherbicide production. Braz J Microbiol 48:101–108. https://doi.org/10.1016/j.bjm.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  3. Bilal S, Ali L, Khan AL et al (2018) Endophytic fungus Paecilomyces formosus LHL10 produces sester-terpenoid YW3548 and cyclic peptide that inhibit urease and α-glucosidase enzyme activities. Arch Microbiol 200:1493–1502. https://doi.org/10.1007/s00203-018-1562-7

    Article  CAS  PubMed  Google Scholar 

  4. Zhang G, Zhang Y, Qin J et al (2013) Antifungal metabolites produced by Chaetomium globosum No.04, an endophytic fungus isolated from Ginkgo biloba. Indian J Microbiol 53:175–180. https://doi.org/10.1007/s12088-013-0362-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Daniel JJ, Zabot GL, Tres MV et al (2018) Fusarium fujikuroi: A novel source of metabolites with herbicidal activity. Biocatal Agric Biotechnol 14:314–320. https://doi.org/10.1016/j.bcab.2018.04.001

    Article  Google Scholar 

  6. de Souza ARC, Baldoni DB, Lima J et al (2015) Bioherbicide production by Diaporthe sp. isolated from the Brazilian Pampa biome. Biocatal Agric Biotechnol 4:575–578. https://doi.org/10.1016/j.bcab.2015.09.005

    Article  Google Scholar 

  7. dos Reis CM, da Rosa BV, da Rosa GP et al (2019) Antifungal and antibacterial activity of extracts produced from Diaporthe schini. J Biotechnol 294:30–37. https://doi.org/10.1016/j.jbiotec.2019.01.022

    Article  CAS  PubMed  Google Scholar 

  8. Valente IL, Confortin TC, Luft L et al (2018) Extraction of bioactive compounds from Botryosphaeria dothidea using supercritical carbon dioxide and compressed liquefied petroleum gas. J Supercrit Fluids 136:52–59. https://doi.org/10.1016/j.supflu.2018.02.013

    Article  CAS  Google Scholar 

  9. Carvalho CR, Gonçalves VN, Pereira CB et al (2012) The diversity, antimicrobial and anticancer activity of endophytic fungi associated with the medicinal plant Stryphnodendron adstringens (Mart.) Coville (Fabaceae) from the Brazilian savannah. Symbiosis 57:95–107. https://doi.org/10.1007/s13199-012-0182-2

    Article  Google Scholar 

  10. Sharma V, Singamaneni V, Sharma N et al (2018) Valproic acid induces three novel cytotoxic secondary metabolites in Diaporthe sp., an endophytic fungus from Datura inoxia Mill. Bioorg Med Chem Lett 28:2217–2221. https://doi.org/10.1016/j.bmcl.2018.04.018

    Article  CAS  PubMed  Google Scholar 

  11. El-Gendy MMAA, Yahya SMM, Hamed AR et al (2018) Phylogenetic analysis and biological evaluation of marine endophytic fungi derived from red sea sponge Hyrtios erectus. Appl Biochem Biotechnol 185:755–777. https://doi.org/10.1007/s12010-017-2679-x

    Article  CAS  PubMed  Google Scholar 

  12. Tanney JB, McMullin DR, Green BD et al (2016) Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biol 120:1448–1457. https://doi.org/10.1016/j.funbio.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  13. Li G, Kusari S, Kusari P et al (2015) Endophytic Diaporthe sp. LG23 produces a potent antibacterial tetracyclic triterpenoid. J Nat Prod 78:2128–2132. https://doi.org/10.1021/acs.jnatprod.5b00170

    Article  CAS  PubMed  Google Scholar 

  14. Sebastianes FLS, Cabedo N, El Aouad N et al (2012) 3-Hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr Microbiol 65:622–632. https://doi.org/10.1007/s00284-012-0206-4

    Article  CAS  PubMed  Google Scholar 

  15. Tanapichatsakul C, Monggoot S, Gentekaki E, Pripdeevech P (2018) Antibacterial and antioxidant metabolites of Diaporthe spp. isolated from flowers of Melodorum fruticosum. Curr Microbiol 75:476–483. https://doi.org/10.1007/s00284-017-1405-9

    Article  CAS  PubMed  Google Scholar 

  16. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042. https://doi.org/10.1021/np9904509

    Article  CAS  PubMed  Google Scholar 

  17. Demirci MA, Ipek Y, Gul F et al (2018) Extraction, isolation of heat-resistance phenolic compounds, antioxidant properties, characterization and purification of 5-hydroxymaltol from Turkish apple pulps. Food Chem 269:111–117. https://doi.org/10.1016/j.foodchem.2018.06.147

    Article  CAS  PubMed  Google Scholar 

  18. Kungel PTAN, Correa VG, Corrêa RCG et al (2018) Antioxidant and antimicrobial activities of a purified polysaccharide from yerba mate (Ilex paraguariensis). Int J Biol Macromol 114:1161–1167. https://doi.org/10.1016/j.ijbiomac.2018.04.020

    Article  CAS  PubMed  Google Scholar 

  19. Lin T, Liu Y, Lai C et al (2018) The effect of ultrasound assisted extraction on structural composition, antioxidant activity and immunoregulation of polysaccharides from Ziziphus jujuba Mill var. spinosa seeds. Ind Crops Prod 125:150–159. https://doi.org/10.1016/j.indcrop.2018.08.078

    Article  CAS  Google Scholar 

  20. Trentini CP, Cuco RP, Cardozo-Filho L, da Silva C (2019) Extraction of macauba kernel oil using supercritical carbon dioxide and compressed propane. Can J Chem Eng 97:785–792. https://doi.org/10.1002/cjce.23236

    Article  CAS  Google Scholar 

  21. Şahin S, Bilgin M, Dramur MU (2011) Investigation of oleuropein content in olive leaf extract obtained by supercritical fluid extraction and soxhlet methods. Sep Sci Technol 46:1829–1837. https://doi.org/10.1080/01496395.2011.573519

    Article  CAS  Google Scholar 

  22. Scapin G, Abaide ER, Nunes LF et al (2017) Effect of pressure and temperature on the quality of chia oil extracted using pressurized fluids. J Supercrit Fluids 127:90–96. https://doi.org/10.1016/j.supflu.2017.03.030

    Article  CAS  Google Scholar 

  23. de Melo MMR, Silvestre AJD, Silva CM (2014) Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J Supercrit Fluids 92:115–176. https://doi.org/10.1016/j.supflu.2014.04.007

    Article  CAS  Google Scholar 

  24. Kitzberger CSG, Smânia A Jr, Pedrosa RC, Ferreira SRS (2007) Antioxidant and antimicrobial activities of shiitake (Lentinula edodes) extracts obtained by organic solvents and supercritical fluids. J Food Eng 80:631–638. https://doi.org/10.1016/j.jfoodeng.2006.06.013

    Article  CAS  Google Scholar 

  25. Mazzutti S, Ferreira SRS, Riehl CAS et al (2012) Supercritical fluid extraction of Agaricus brasiliensis: Antioxidant and antimicrobial activities. J Supercrit Fluids 70:48–56. https://doi.org/10.1016/j.supflu.2012.06.010

    Article  CAS  Google Scholar 

  26. Confortin TC, Todero I, Soares JF et al (2017) Extraction and composition of extracts obtained from Lupinus albescens using supercritical carbon dioxide and compressed liquefied petroleum gas. J Supercrit Fluids 128:395–403. https://doi.org/10.1016/j.supflu.2017.06.006

    Article  CAS  Google Scholar 

  27. de Souza ARC, Guedes AR, Rodriguez JMF et al (2018) Extraction of Arctium Lappa leaves using supercritical CO2 + ethanol: kinetics, chemical composition, and bioactivity assessments. J Supercrit Fluids 140:137–146. https://doi.org/10.1016/j.supflu.2018.06.011

    Article  CAS  Google Scholar 

  28. Sallet D, Abaide E, Marcuz C et al (2017) Obtaining fatty acids from Mortierella isabellina using supercritical carbon dioxide and compressed liquefied petroleum gas. J Supercrit Fluids 122:79–87. https://doi.org/10.1016/j.supflu.2016.12.005

    Article  CAS  Google Scholar 

  29. NIST–Chemistry WebBook (2017) https://webbook.nist.gov/chemistry/. Accessed 11 Mar 2019. https://doi.org/10.18434/T4D303

  30. Meireles MAA (2008) Extraction of bioactive compounds from Latin American plants, in: J. Martinez (Ed.), Supercritical fluid extraction of nutraceuticals and bioactive compounds, CRC Press – Taylor & Francis Group, Boca Raton.

  31. Dal Prá V, Dolwitsch CB, Lima FO, et al (2015) Ultrasound-assisted extraction and biological activities of extracts of Brassica oleracea var. capitata. Food Technol Biotechnol 53:102–109. https://doi.org/10.17113/ftb.53.01.15.3533

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dal Prá V, Soares JF, Monego DL et al (2016) Extraction of bioactive compounds from palm (Elaeis guineensis) pressed fiber using different compressed fluids. J Supercrit Fluids 112:51–56. https://doi.org/10.1016/j.supflu.2016.02.011

    Article  CAS  Google Scholar 

  33. Goyeneche R, Fanovich A, Rodrigues CR et al (2018) Supercritical CO2 extraction of bioactive compounds from radish leaves: yield, antioxidant capacity and cytotoxicity. J Supercrit Fluids 135:78–83. https://doi.org/10.1016/j.supflu.2018.01.004

    Article  CAS  Google Scholar 

  34. Elgndi MA, Filip S, Pavlić B et al (2017) Antioxidative and cytotoxic activity of essential oils and extracts of Satureja montana L., Coriandrum sativum L. and Ocimum basilicum L. obtained by supercritical fluid extraction. J Supercrit Fluids 128:128–137. https://doi.org/10.1016/j.supflu.2017.05.025

    Article  CAS  Google Scholar 

  35. Zabot GL, Moraes MN, Petenate AJ, Meireles MAA (2014) Influence of the bed geometry on the kinetics of the extraction of clove bud oil with supercritical CO2. J Supercrit Fluids 93:56–66. https://doi.org/10.1016/j.supflu.2013.10.001

    Article  CAS  Google Scholar 

  36. Zhao H, Dong J, Lu J et al (2006) Effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley (Hordeum vulgare L.). J Agric Food Chem 54:7277–7286. https://doi.org/10.1021/jf061087w

    Article  CAS  PubMed  Google Scholar 

  37. Pereira P, Bernardo-Gil MG, Cebola MJ et al (2013) Supercritical fluid extracts with antioxidant and antimicrobial activities from myrtle (Myrtus communis L.) leaves. Response surface optimization. J Supercrit Fluids 83:57–64. https://doi.org/10.1016/j.supflu.2013.08.010

    Article  CAS  Google Scholar 

  38. Takaya Y, Furukawa T, Miura S et al (2007) Antioxidant constituents in distillation residue of Awamori spirits. J Agric Food Chem 55:75–79. https://doi.org/10.1021/jf062029d

    Article  CAS  PubMed  Google Scholar 

  39. Tan LTH, Chan KG, Chan CK et al (2018) Antioxidative potential of a Streptomyces sp. MUM292 isolated from mangrove soil. Biomed Res Int 2018:1–13. https://doi.org/10.1155/2018/4823126

    Article  CAS  Google Scholar 

  40. Kim MK, Nam P-W, Lee S-J, Lee K-G (2014) Antioxidant activities of volatile and non-volatile fractions of selected traditionally brewed Korean rice wines. J Inst Brew 120:537–542. https://doi.org/10.1002/jib.180

    Article  CAS  Google Scholar 

  41. Xia M, Liu L, Qiu R et al (2018) Anti-inflammatory and anxiolytic activities of Euphorbia hirta extract in neonatal asthmatic rats. AMB Express 8:179–189. https://doi.org/10.1186/s13568-018-0707-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tyagi T, Agarwal M (2017) Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J Pharmacogn Phytochem 6:195–206

    CAS  Google Scholar 

  43. Wei LS, Wee W, Siong JYF, Syamsumir DF (2011) Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Med Iran 49:670–674

    PubMed  Google Scholar 

  44. Patil L, Kaliwal BB (2019) Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioprocess Biosyst Eng 42:979–994. https://doi.org/10.1007/s00449-019-02099-5

    Article  CAS  PubMed  Google Scholar 

  45. Hou R, Liu X, Xiang K et al (2019) Characterization of the physicochemical properties and extraction optimization of natural melanin from Inonotus hispidus mushroom. Food Chem 277:533–542. https://doi.org/10.1016/j.foodchem.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  46. Li S, Tang D, Wei R et al (2019) Polysaccharides production from soybean curd residue via Morchella esculenta. J Food Biochem 43:1–12. https://doi.org/10.1111/jfbc.12791

    Article  CAS  Google Scholar 

  47. Wang Y, Ma H, Ding Z et al (2019) Three-phase partitioning for the direct extraction and separation of bioactive exopolysaccharides from the cultured broth of Phellinus baumii. Int J Biol Macromol 123:201–209. https://doi.org/10.1016/j.ijbiomac.2018.11.065

    Article  CAS  PubMed  Google Scholar 

  48. Vasundhara M, Baranwal M, Sivaramaiah N, Kumar A (2017) Isolation and characterization of trichalasin-producing endophytic fungus from Taxus baccata. Ann Microbiol 67:255–261. https://doi.org/10.1007/s13213-017-1256-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Coordination for the Improvement of Higher Education Personnel (CAPES) for scholarships, as well as National Council for Scientific and Technological Development (CNPq) and Research Support Foundation of the State of Rio Grande do Sul (FAPERGS) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Cristine Kuhn.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest regarding this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Rosa, B.V., Kuhn, K.R., Ugalde, G.A. et al. Antioxidant compounds extracted from Diaporthe schini using supercritical CO2 plus cosolvent. Bioprocess Biosyst Eng 43, 133–141 (2020). https://doi.org/10.1007/s00449-019-02211-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02211-9

Keywords

Navigation