Skip to main content
Log in

Production, characteristics and applications of phytase from a rhizosphere isolated Enterobacter sp. ACSS

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Optimization of process parameters for phytase production by Enterobacter sp. ACSS led to a 4.6-fold improvement in submerged fermentation, which was enhanced further in fed-batch fermentation. The purified 62 kDa monomeric phytase was optimally active at pH 2.5 and 60 °C and retained activity over a wide range of temperature (40–80 °C) and pH (2.0–6.0) with a half-life of 11.3 min at 80 °C. The kinetic parameters K m, V max, K cat, and K cat/K m of the pure phytase were 0.21 mM, 131.58 nmol mg−1 s−1, 1.64 × 103 s−1, and 7.81 × 106 M−1 s−1, respectively. The enzyme was fairly stable in the presence of pepsin under physiological conditions. It was stimulated by Ca+2, Mg+2 and Mn+2, but inhibited by Zn+2, Cu+2, Fe+2, Pb+2, Ba+2 and surfactants. The enzyme can be applied in dephytinizing animal feeds, and the baking industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koppelaar RH, Weikard HP (2013) Assessing phosphate rock depletion and phosphorus recycling options. Glob Environ Change 23:1454–1466

    Article  Google Scholar 

  2. Escobin-Mopera L, Ohtani M, Sekiguchi S, Sone T, Abe A, Tanaka M et al (2012) Purification and characterization of phytase from Klebsiella pneumoniae 9-3B. J Biosci Bioeng 113:562–567

    Article  CAS  Google Scholar 

  3. Joshi S, Satyanarayana T (2014) Optimization of heterologous expression of the phytase (PPHY) of Pichia anomala in P. pastoris and its applicability in fractionating allergenic glycinin from soy protein. J Ind Microbiol Biotechnol 41:977–987

    Article  CAS  Google Scholar 

  4. Kumar A, Chanderman A, Singh S (2015) Microbial production of phytases for combating environmental phosphate pollution and other diverse applications. Crit Rev Environ Sci Technol. doi:10.1080/10643389.2015.1131562

    Google Scholar 

  5. Howson SJ, Davis RP (1983) Production of phytate-hydrolysing enzyme by some fungi. Enzyme Microb Technol 5:377–382

    Article  CAS  Google Scholar 

  6. Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317

    Article  CAS  Google Scholar 

  7. Singh B, Satyanarayana T (2006) Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake. Appl Biochem Biotechnol 133:239–250

    Article  CAS  Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  9. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  10. Bae HD, Yanke LJ, Cheng KJ, Selinger LB (1999) A novel staining method for detecting phytase activity. J Microbiol Methods 39:17–22

    Article  CAS  Google Scholar 

  11. Bhavsar K, Ravi Kumar V, Khire JM (2011) High level phytase production by Aspergillus niger NCIM 563 in solid state culture: response surface optimization, up-scaling, and its partial characterization. J Indus Microbiol Biotechnol 38:1407–1417

    Article  CAS  Google Scholar 

  12. Sapna, Singh B (2013) Improved production of protease-resistant phytase by Aspergillus oryzae and its applicability in the hydrolysis of insoluble phytates. J Ind Microbiol Biotechnol 40:891–899

    Article  CAS  Google Scholar 

  13. Gacula MC, Singh J (1984) Statistical methods in food and consumer research. Academic Press, New York

    Google Scholar 

  14. Greiner R (2007) Phytate-degrading enzymes: regulation of synthesis in microorganisms and plants. Inositol phosphates. Linking agriculture and the environment. CAB International, Wallingford

    Google Scholar 

  15. Williams SG (1970) The role of phytic acid in the wheat grain. Plant Physiol 45:376–381

    Article  CAS  Google Scholar 

  16. Guo J, Bian YY, Zhu KX, Guo XN, Peng W, Zhou HM (2015) Activation of endogenous phytase and degradation of phytate in wheat bran. J Agric Food Chem 63:1082–1087

    Article  CAS  Google Scholar 

  17. Karthic P, Joseph S, Arun N, Kumaravel S (2013) Optimization of biohydrogen production by Enterobacter species using artificial neural network and response surface methodology. J Renew Sustain Energy 5:033104

    Article  Google Scholar 

  18. Torres CA, Marques R, Ferreira AR, Antunes S, Grandfils C, Freitas F, Reis MA (2014) Impact of glycerol and nitrogen concentration on Enterobacter A47 growth and exopolysaccharide production. Int J Biol Macromol 71:81–86

    Article  CAS  Google Scholar 

  19. Son MK, Hong SJ, Lee YH (2007) Acetate-mediated pH-stat fed-batch cultivation of transconjugant Enterobacter sp. BL-2S over-expressing glmS gene for excretive production of microbial polyglucosamine PGB-1. J Ind Microbiol Biotechnol 34:799–805

    Article  CAS  Google Scholar 

  20. Li L, Li K, Wang Y, Chen C, Xu Y, Zhang L, Han B, Gao C, Tao F, Ma C (2015) Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R, 3R)-2, 3-butanediol from lignocellulose-derived sugars. Meta Eng 28:19–27

    Article  CAS  Google Scholar 

  21. Kleist S, Miksch G, Hitzmann B, Arndt M, Friehs K, Flaschel E (2003) Optimization of the extracellular production of a bacterial phytase with Escherichia coli by using different fed-batch fermentation strategies. Appl Microbiol Biotechnol 61:456–462

    Article  CAS  Google Scholar 

  22. Verma D, Satyanarayana T (2012) Phytase production by the unconventional yeast Pichia anomala in fed batch and cyclic fed batch fermentations. Afr J Biotechnol 11:13705–13709

    Article  CAS  Google Scholar 

  23. Coban HB, Demirci A (2014) Enhanced submerged Aspergillus ficuum phytase production by implementation of fed-batch fermentation. Bioproc Biosyst Engin 37:2579–2586

    Article  CAS  Google Scholar 

  24. Dancer G, Mah JH, Rhee MS, Hwang IG, Kang DH (2009) Resistance of Enterobacter sakazakii (Cronobacter spp.) to environmental stresses. J Appl Microbiol 107:1606–1614

    Article  CAS  Google Scholar 

  25. Rowbury R, Goodson M, Wallace A (1992) The PhoE porin and transmission of the chemical stimulus for induction of acid resistance (acid habituation) in Escherichia coli. J Appl Bacteriol 72:233–243

    Article  CAS  Google Scholar 

  26. Gauthier MJ, Flatau GN, Clément RL, Munro PM (1993) The loss of culturability by Escherichia coli cells in seawater depends on availability of phosphate ions and phosphate transport systems. Microb Ecol 26:29–35

    Article  CAS  Google Scholar 

  27. Zhao W, Xiong A, Fu X, Gao F, Tian Y, Peng R (2010) High level expression of an acid-stable phytase from Citrobacter freundii in Pichia pastoris. Appl Biochem Biotechnol 162:2157–2165

    Article  CAS  Google Scholar 

  28. Ghatak A, Guha AK, Ray L (2010) β-d-Galactosidase from Enterobacter cloacae: production and some physicochemical properties. Appl Biochem Biotechnol 162:1678–1688

    Article  CAS  Google Scholar 

  29. Cha J, Jung JH, Park SE, Cho MH, Seo DH, Ha SJ et al (2009) Molecular cloning and functional characterization of a sucrose isomerase (isomaltulose synthase) gene from Enterobacter sp. FMB-1. J Appl Microbiol 107:1119–1130

    Article  CAS  Google Scholar 

  30. Farrokh P, Yakhchali B, Asghar Karkhane A (2014) Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12. Braz J Microbiol 45:677–687

    Article  CAS  Google Scholar 

  31. Graminho ER, Takaya N, Nakamura A, Hoshino T (2015) Purification, biochemical characterization, and genetic cloning of the phytase produced by Burkholderia sp. strain a13. J Gen Appl Microbiol 61:15–23

    Article  CAS  Google Scholar 

  32. Yu P, Chen Y (2013) Purification and characterization of a novel neutral and heat-tolerant phytase from a newly isolated strain Bacillus nealsonii ZJ0702. BMC Biotechnol 13:78

    Article  CAS  Google Scholar 

  33. Park I, Lee J, Cho J (2012) Degradation of phytate pentamagnesium salt by Bacillus sp. T4 phytase as a potential eco-friendly feed additive. Asian Australas J Anim Sci 10:1466–1472

    Article  Google Scholar 

  34. Yao MZ, Wang X, Wang W, Fu YJ, Liang AH (2013) Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnol Lett 10:1669–1676

    Article  Google Scholar 

  35. Reddy CS, Achary VM, Manna M, Singh J, Kaul T, Reddy MK (2015) Isolation and molecular characterization of thermostable phytase from Bacillus subtilis (BSPhyARRMK33). Appl Biochem Biotechnol 175:3058–3067

    Article  CAS  Google Scholar 

  36. Tang J, Leung A, Leung C, Lim BL (2006) Hydrolysis of precipitated phytate by three distinct families of phytases. Soil Biol Biochem 38:1316–1324

    Article  CAS  Google Scholar 

  37. Santos T, Connolly C, Murphy R (2015) Trace element inhibition of phytase activity. Biol Trace Elem Res 163:255–265

    Article  CAS  Google Scholar 

  38. Sarıbuga E, Nadaroglu H, Dikbas N, Senol M, Cetin B (2015) Purification, characterization of phytase enzyme from Lactobacillus plantarum bacteria and determination of its kinetic properties. Afr J Biotechnol 13:2373–2378

    Google Scholar 

  39. Bar A, Shinder D, Yosefi S, Vax E, Plavnik I (2003) Metabolism and requirements for calcium and phosphorus in the fast-growing chicken as affected by age. Braz J Nutr 89:51–61

    Article  CAS  Google Scholar 

  40. Sugiura SH, Dong FM, Hardy RW (2000) A new approach to estimating the minimum dietary requirement of phosphorus for large rainbow trout based on nonfecal excretions of phosphorus and nitrogen. J Nutr 130:865–872

    CAS  Google Scholar 

  41. Tran TT, Hashim SO, Gaber Y, Mamo G, Mattiasson B, Hatti-Kaul R (2011) Thermostable alkaline phytase from Bacillus sp. MD2: effect of divalent metals on activity and stability. J Inorg Biochem 105:1000–1007

    Article  CAS  Google Scholar 

  42. Haros M, Rosell CM, Benedito C (2001) Fungal phytase as a potential bread making additive. Eur Food Res Technol 213:317–322

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the National Research Foundation, Republic of South Africa and Durban University of Technology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suren Singh.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanderman, A., Puri, A.K., Permaul, K. et al. Production, characteristics and applications of phytase from a rhizosphere isolated Enterobacter sp. ACSS. Bioprocess Biosyst Eng 39, 1577–1587 (2016). https://doi.org/10.1007/s00449-016-1632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1632-7

Keywords

Navigation