Skip to main content
Log in

β-d-Galactosidase from Enterobacter cloacae: Production and Some Physicochemical Properties

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A bacterial strain isolated from soil and identified as Enterobacter cloacae had been found to be capable of producing both intra and extracellular β-d-galactosidase.The intracellular enzyme was thermostable and its optimum temperature, pH and time for enzyme—substrate reaction were found to be 50 °C, 9.0 and 5 min respectively, using ONPG as substrate. The maximum β-galactosidase production in shake flask was achieved at 30 °C, pH 7.0, incubation time 72 h using 50 ml medium in 250 ml Erlenmeyer flask. Only Mg2+ stimulated the activity of enzyme. Cetyl trimethyl ammonium bromide showed stimulatory effect on catalytic activity of the enzyme whereas EDTA inhibited enzyme activity. The enzyme retained its activity upto 55 °C after incubating at that temperature for 1 h.The maximum activity of crude intracellular enzyme was 14.35 IU/mg of protein. The K m and V max values of β-galactosidase using ONPG as substrate at 50 °C were 2.805 mM and 37.45 × 10−3 mM/min/mg, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Neelkantan, S., Mohanta, A. K., & Kaushik, J. K. (1999). Current Science, 77, 143–149.

    Google Scholar 

  2. Shukla, T. P. (1975). Critical Reviews in Food and Technology, 5, 325–356.

    Article  CAS  Google Scholar 

  3. Dziezak, J. D. (1991). Food Technology, 45(1), 78–85.

  4. Lifran, E. V., Hourigan, J. A., Sleigh, R. W., & Johnson, R. L. (2000). New ways for Lactose. Food Australia, 52, 120–125.

    Google Scholar 

  5. Nijpels, H. H. (1980). Enzymes in food processing (Vol. Paper 5, pp. 89–104). London: Applied Science Publishers Limited.

    Google Scholar 

  6. Reed, G. (1975). Enzymes in food processing, 2nd edn. Academic Press, San Diego. pp. 83–391

  7. Tanriseven, A., & Dogan, S. (2002). Process Biochemistry, 38, 27–30.

    Article  CAS  Google Scholar 

  8. Panesar, P. S., Panesar, R., Singh, S., Kennedy, J. F., & Kumar, H. (2006). Journal of Chemical Technology and Biotechnology, 81, 530–543.

    Article  CAS  Google Scholar 

  9. Chakraborti, S., Sani, R. K., Banerjee, U. C., & Sobti, R. C. (2003). Scientia Iranica, 10(3), 279–286.

    CAS  Google Scholar 

  10. Batra, N., Singh, J., Banerjee, U. C., Patnaik, P. R., & Sobti, R. C. (2002). Biotechnology and Applied Biochemistry, 36, 1–6.

    Article  CAS  Google Scholar 

  11. Salle, A. J. (1974). Text book of bacteriology (7th ed., p. 274). New Delhi: McGraw Hill Publishing Co. Ltd.

    Google Scholar 

  12. Onishi, N., & Tanaka, T. (1995). Applied and Environmental Microbiology, 61(11), 4026–4030.

    CAS  Google Scholar 

  13. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  14. Holt, J. G., Krieg, N. R., Peter, H. A. S., & Bergy, D. H. (1994). Bergy's manual of determinative Bacteriology, 9th edn. Lippincott Williams & Wilkins, Philadelphia.

  15. Kim, C. S., Ji, E.-S., & Oh, D.-K. (2004). Journal of Applied Microbiology, 97, 1006–1014.

    Article  CAS  Google Scholar 

  16. Zhou, Q. Z. K., & Chen, X. D. (2001). Biochemical Engineering Journal, 9, 33–40.

    Article  CAS  Google Scholar 

  17. Chen, W., Chen, H., Xia, Y., Tian, F., & Zhang, H. (2008). Journal of Dairy Science, 91, 1751–1758.

    Article  CAS  Google Scholar 

  18. Fernandes, S., Geueke, B., Delgado, O., Coleman, J., & Hatti-kaul, R. (2002). Applied Microbiology and Biotechnology, 58, 313–321. doi:10.1007/s00253-001-0905-4.

    Article  CAS  Google Scholar 

  19. Tomaska, M., Stredansky, M., Gemeiner, P., & Sturdik, E. (1995). Process Biochemistry, 30(7), 649–652.

    Google Scholar 

  20. Haider, T., & Hussain, Q. (2007). Journal of the Science of Food and Agriculture, 87(7), 1278–1283.

    Article  CAS  Google Scholar 

  21. Numanoglu, Y., & Sungur, S. (2004). Process Biochemistry, 39, 703–709.

    Article  CAS  Google Scholar 

  22. Pal, A., Pal, V., Ramana, K. V., & Bawa, A. S. (2009). Journal of Food Science and Technology, 46(3), 217–220.

    CAS  Google Scholar 

  23. Horowitz, P. M., & Tandon, S. (1967). Journal of Biological Chemistry, 262(10), 4486–4491.

    Google Scholar 

Download references

Acknowledgement

Authors gratefully thank the Ministry of Food Processing Industries and Horticulture, Government of West Bengal, India for providing financial support to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalitagauri Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghatak, A., Guha, A.K. & Ray, L. β-d-Galactosidase from Enterobacter cloacae: Production and Some Physicochemical Properties. Appl Biochem Biotechnol 162, 1678–1688 (2010). https://doi.org/10.1007/s12010-010-8949-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8949-5

Keywords

Navigation