Skip to main content
Log in

Development of an efficient process intensification strategy for enhancing Pfu DNA polymerase production in recombinant Escherichia coli

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

An efficient induction strategy that consisted of multiple additions of small doses of isopropyl-β-D-thiogalactopyranoside (IPTG) in the early cell growth phase was developed for enhancing Pfu DNA polymerase production in Escherichia coli. In comparison to the most commonly used method of a single induction of 1 mM IPTG, the promising induction strategy resulted in an increase in the Pfu activity of 13.5 % in shake flasks, while simultaneously decreasing the dose of IPTG by nearly half. An analysis of the intracellular IPTG concentrations indicated that the cells need to maintain an optimum intracellular IPTG concentration after 6 h for efficient Pfu DNA polymerase production. A significant increase in the Pfu DNA polymerase activity of 31.5 % under the controlled dissolved oxygen concentration of 30 % in a 5 L fermentor was achieved using the multiple IPTG induction strategy in comparison with the single IPTG induction. The induction strategy using multiple inputs of IPTG also avoided over accumulation of IPTG and reduced the cost of Pfu DNA polymerase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hansen CJ, Wu L, Fox JD, Arezi B, Hogrefe HH (2011) Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide gamma-phosphate derivative. Nucleic Acids Res 39:1801–1810

    Article  CAS  Google Scholar 

  2. Melissis S, Labrou NE, Clonis YD (2006) Nucleotide-mimetic synthetic ligands for DNA-recognizing enzymes—One-step purification of Pfu DNA polymerase. J Chromatogr A 1122:63–75

    Article  CAS  Google Scholar 

  3. Norholm MH (2010) A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotech 10:21

    Article  Google Scholar 

  4. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61

    Article  CAS  Google Scholar 

  5. Lu CL, Erickson HP (1997) Expression in Escherichia coli of the thermostable DNA polymerase from Pyrococcus furiosus. Protein Expres Purif 11:179–184

    Article  CAS  Google Scholar 

  6. Uemori T, Ishino Y, Toh H, Asada K, Kato I (1993) Organization and nucleotide-sequence of the DNA-polymerase gene from the archaeon Pyrococcus furiosus. Nucleic Acids Res 21:259–265

    Article  CAS  Google Scholar 

  7. Dabrowski S, Kur J (1998) Cloning and expression in Escherichia coli of the recombinant his-tagged DNA polymerases from Pyrococcus furiosus and Pyrococcus woesei. Protein Expr Purif 14:131–138

    Article  CAS  Google Scholar 

  8. Sun Z, Cai J (2006) Purification of recombinant Pfu DNA polymerase using a new JK110 resin. Korean J Chem Eng 23:607–609

    Article  Google Scholar 

  9. Fernandez A, Ruiz J, Caminal G, Lopez-Santin J (2010) Development and validation of a liquid chromatography-mass spectrometry assay for the quantitation of IPTG in E. Coli fed-batch cultures. Anal Chem 82:5728–5734

    Article  CAS  Google Scholar 

  10. Donovan RS, Robinson CW, Glick BR (1996) Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J Ind Microbiol 16:145–154

    Article  CAS  Google Scholar 

  11. Einsfeldt K, Severo Junior JB, Correa Argondizzo AP, Medeiros MA, Moitinho Alves TL, Almeida RV, Larentis AL (2011) Cloning and expression of protease ClpP from Streptococcus pneumoniae in Escherichia coli: study of the influence of kanamycin and IPTG concentration on cell growth, recombinant protein production and plasmid stability. Vaccine 29:7136–7143

    Article  CAS  Google Scholar 

  12. Malakar P, Venkatesh KV (2012) Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Appl Microbiol Biotechnol 93:2543–2549

    Article  CAS  Google Scholar 

  13. Pinsach J, de MasC Lopez-Santin J (2008) Induction strategies in fed-batch cultures for recombinant protein in Escherichia coli: application to rhamnulose 1-phosphate aldolase. Biochem Eng J 41:181–187

    Article  CAS  Google Scholar 

  14. Striedner G, Cserjan-Puschmann M, Potschacher F, Bayer K (2003) Tuning the transcription rate of recombinant protein in strong Escherichia coli expression systems through repressor titration. Biotechnol Progr 19:1427–1432

    Article  CAS  Google Scholar 

  15. Lecina M, Sarro E, Casablancas A, Godia F, Cairo JJ (2013) IPTG limitation avoids metabolic burden and acetic acid accumulation in induced fed-batch cultures of Escherichia coli M15 under glucose limiting conditions. Biochem Eng J 70:78–83

    Article  CAS  Google Scholar 

  16. Durany O, Caminal G, de Mas C, Lopez-Santin J (2004) Studies on the expression of recombinant fuculose-1-phosphate aldolase in E. coli. Process Biochem 39:1677–1684

    Article  CAS  Google Scholar 

  17. Lim HK, Jung KH, Park DH, Chung SI (2000) Production characteristics of interferon-alpha using an L-arabinose promoter system in a high-cell-density culture. Appl Microbiol Biotechnol 53:201–208

    Article  CAS  Google Scholar 

  18. Olaofe OA, Burton SG, Cowan DA, Harrison STL (2010) Improving the production of a thermostable amidase through optimising IPTG induction in a highly dense culture of recombinant Escherichia coli. Biochem Eng J 52:19–24

    Article  CAS  Google Scholar 

  19. Bentley WE, Davis RH, Kompala DS (1991) Dynamics of induced cat expression in Escherichia coli. Biotechnol Bioeng 38:749–760

    Article  CAS  Google Scholar 

  20. Duan KJ, Lin MT, Hung YC, Lin CT, Chen CW, Sheu DC (2000) Production of GST-SOD fusion protein by recombinant E coli XL1 Blue. J Chem Technol Biotechnol 75:722–728

    Article  CAS  Google Scholar 

  21. Miao F, Kompala DS (1992) Overexpression of cloned genes using recombinant Escherichia coli regulated by a T7-promoter: I. batch cultures and kinetic modeling. Biotechnol Bioeng 40:787–796

    Article  CAS  Google Scholar 

  22. Kim M, Elvin C, Brownlee A, Lyons R (2007) High yield expression of recombinant pro-resilin: lactose-induced fermentation in E coli and facile purification. Protein Expres Purif 52:230–236

    Article  CAS  Google Scholar 

  23. Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS (1989) Plasmid-encoded protein: the principal factor in the “Metabolic Burden” associated with recombinant bacteria. Biotechnol Bioeng 102:1284–1297

    Google Scholar 

  24. Chen SJ, Chang MC, Cheng CY (1997) Effect of induction conditions on production and excretion of Aeromonas hydrophila chitinase by recombinant Escherichia coli. J Ferment Bioeng 84:610–613

    Article  CAS  Google Scholar 

  25. Ren Q, Henes B, Fairhead M, Thony-Meyer L (2013) High level production of tyrosinase in recombinant Escherichia coli. BMC Biotech 13:18

    Article  CAS  Google Scholar 

  26. Srivastava P, Mukherjee KJ (2005) Kinetic studies of recombinant human interferon-alpha (rhIFN-alpha) expression in transient state continuous cultures. Biochem Eng J 26:50–58

    Article  CAS  Google Scholar 

  27. Fernandez-Castane A, Vine CE, Caminal G, Lopez-Santin J (2012) Evidencing the role of lactose permease in IPTG uptake by Escherichia coli in fed-batch high cell density cultures. J Biotechnol 157:391–398

    Article  CAS  Google Scholar 

  28. Herzenberg LA (1961) Isolation and identification of derivates formed in the course of intracellular accumulation of thiogalactosides by Escherichia coli. Arch Biochem Biophys 93:314–315

    Article  CAS  Google Scholar 

  29. Roderick SL (2005) The lac operon galactoside acetyltransferase. C R Biol 328:568–575

    Article  CAS  Google Scholar 

  30. Wang H, Wang F, Wei D (2009) Impact of oxygen supply on rtPA expression in Escherichia coli BL21 (DE3): ammonia effects. Appl Microbiol Biotechnol 82:249–259

    Article  CAS  Google Scholar 

  31. Losen M, Frolich B, Pohl M, Buchs J (2004) Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol Prog 20:1062–1068

    Article  CAS  Google Scholar 

  32. Qoronfleh MW (1999) Dissolved oxygen concentration affects the accumulation of HIV-1 recombinant proteins in Escherichia coli. Appl Biochem Biotechnol 80:107–120

    Article  CAS  Google Scholar 

  33. Konz JO, King J, Cooney CL (1998) Effects of oxygen on recombinant protein expression. Biotechnol Prog 14:393–409

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Technology Research and Development Program of China (Nos. 2012BAK25B01), and the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSZD-EW-Z-015). We acknowledge Dr. Amanda Stiles (the Chinese Academy of Sciences Fellowships for Young International Scientists, No. 2011Y1GA01) for the help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Zhao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, JH., Wang, F. & Liu, CZ. Development of an efficient process intensification strategy for enhancing Pfu DNA polymerase production in recombinant Escherichia coli . Bioprocess Biosyst Eng 38, 651–659 (2015). https://doi.org/10.1007/s00449-014-1304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1304-4

Keywords

Navigation