Skip to main content
Log in

Improving the catalytic potential and substrate tolerance of Gibberella intermedia nitrilase by whole-cell immobilization

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Comparative studies of immobilized and free cells of Gibberella intermedia CA3-1 in bioconversion of 3-cyanopyridine to nicotinic acid were performed. Entrapping method was chosen based on the advantages in enzymatic activity recovery, mechanical strength and preparation procedure. Four entrapment matrices were investigated and sodium alginate was screened to be the most suitable material. Maximal nitrilase activity of alginate immobilized cells was obtained under conditions of 2 % alginate, 0.6 % CaCl2, 0.4 g cell/g alginate, 1.8 mm bead size. The immobilized cells showed excellent substrate tolerance even when the 3-cyanopyridine concentration was 700 mM. The half-lives of immobilized cells at 30, 40 and 50 °C were 315, 117.5 and 10.9 h, respectively, correspondingly 1.4, 1.6 and 1.7-fold compared with that of the free cells. Efficient reusability of immobilized cells up to 28 batches was achieved and 205.7 g/(g dcw) nicotinic acid was obtained with 80.55 % enzyme activity preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Velankar H, Clarke KG, du Preez R, Cowan DA, Burton SG (2010) Developments in nitrile and amide biotransformation processes. Trends Biotechnol 28:561–569

    Article  CAS  Google Scholar 

  2. Malandra A, Cantarella M, Kaplan O, Vejvoda V, Uhnakova B, Stepankova B, Kubac D, Martinkova L (2009) Continuous hydrolysis of 4-cyanopyridine by nitrilases from Fusarium solani O1 and Aspergillus niger K10. Appl Microbiol Biotechnol 85:277–284

    Article  CAS  Google Scholar 

  3. Robinson WG, Hooks RH (1964) Ricinine nitrilase_ I. Reaction product and substrate specificity. J Biol Chem 239:4257–4262

    CAS  Google Scholar 

  4. Zheng YG, Chen J, Liu ZQ, Wu MH, Xing LY, Shen YC (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl Microbiol Biotechnol 77:985–993

    Article  CAS  Google Scholar 

  5. Mathew CD, Nagasawa T, Kobayashi M, Yamada H (1988) Nitrilase-catalyzed production of nicotinic acid from 3-cyanopyridine in Rhodococcus rhodochrous J1. Appl Environ Microbiol 54:1030–1032

    CAS  Google Scholar 

  6. Yamamoto K, Komatsu K-I (1992) Purification and characterization of nitrilase responsible for the enantioselective hydrolysis from Acinetobacter sp. AK226. Agric Biol Chem 73:425–430

    CAS  Google Scholar 

  7. Stalker DM, Malyj LD, McBride KE (1988) Purification and properties of a nitrilase specific for the herbicide bromoxynil and corresponding nucleotide sequence analysis of the bxn gene. J Biol Chem 263:6310–6314

    CAS  Google Scholar 

  8. Nagasawa T, Mauger J, Yamada H (1990) A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Purification and characterization. Eur J Biochem 194:765–772

    Article  CAS  Google Scholar 

  9. Kaplan O, Vejvoda V, Plihal O, Pompach P, Kavan D, Bojarova P, Bezouska K, Mackova M, Cantarella M, Jirku V, Kren V, Martinkova L (2006) Purification and characterization of a nitrilase from Aspergillus niger K10. Appl Microbiol Biotechnol 73:567–575

    Article  CAS  Google Scholar 

  10. Vejvoda V, Kubáč D, Davidová A, Kaplan O, Šulc M, Šveda O, Chaloupková R, Martínková L (2010) Purification and characterization of nitrilase from Fusarium solani IMI196840. Process Biochem 45:1115–1120

    Article  CAS  Google Scholar 

  11. Wu Y, Gong JS, Lu ZM, Li H, Zhu XY, Li H, Shi JS, Xu ZH (2013) Isolation and characterization of Gibberella intermedia CA3-1, a novel and versatile nitrilase-producing fungus. J Basic Microbiol 53:934–941

    Article  CAS  Google Scholar 

  12. Chiyanzu I, Cowan DA, Burton SG (2010) Immobilization of Geobacillus pallidus RAPc8 nitrile hydratase (NHase) reduces substrate inhibition and enhances thermostability. J Mol Catal B Enzym 63:109–115

    Article  CAS  Google Scholar 

  13. Liu ZQ, Zhou M, Zhang XH, Xu JM, Xue YP, Zheng YG (2012) Biosynthesis of iminodiacetic acid from iminodiacetonitrile by immobilized recombinant Escherichia coli harboring nitrilase. J Mol Microbiol Biotechnol 22:35–47

    Article  Google Scholar 

  14. Woodley JM (2006) Choice of biocatalyst form for scalable processes. Biochem Soc Trans 34:301–303

    Article  CAS  Google Scholar 

  15. Kaul P, Banerjee A, Banerjee UC (2006) Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules 7:1536–1541

    Article  CAS  Google Scholar 

  16. Dursun AY, Tepe O (2005) Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha. J Hazard Mater 126:105–111

    Article  CAS  Google Scholar 

  17. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    Article  CAS  Google Scholar 

  18. Hartmeier W (1988) Methods of immobilization. Immobilized biocatalysts. Springer, Berlin

    Chapter  Google Scholar 

  19. Shen M, Zheng YG, Liu ZQ, Shen YC (2009) Production of acrylic acid from acrylonitrile by immobilization of Arthrobacter nitroguajacolicus ZJUTB06-99. J Microbiol Biotechnol 19:582–587

    CAS  Google Scholar 

  20. Annadurai G, Babu SR, Mahesh KPO, Murugesan T (2000) Adsorption and bio-degradation of phenol by chitosan-immobilized Pseudomonas putida (NICM 2174). Bioprocess Eng 22:493–501

    Article  CAS  Google Scholar 

  21. Chen CY, Chen SC, Fingas M, Kao CM (2010) Biodegradation of propionitrile by Klebsiella oxytoca immobilized in alginate and cellulose triacetate gel. J Hazard Mater 177:856–863

    Article  CAS  Google Scholar 

  22. Wang YS, Zheng RC, Xu JM, Liu ZQ, Cheng F, Feng ZH, Liu LL, Zheng YG, Shen YC (2010) Enantioselective hydrolysis of (R)-2,2-dimethylcyclopropane carboxamide by immobilized cells of an R-amidase-producing bacterium, Delftia tsuruhatensis CCTCC M 205114, on an alginate capsule carrier. J Ind Microbiol Biotechnol 37:503–510

    Article  CAS  Google Scholar 

  23. Nigam VK, Khandelwal AK, Gothwal RK, Mohan MK, Choudhury B, Vidyarthi AS, Ghosh P (2009) Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp. J Biosci 34:21–26

    Article  CAS  Google Scholar 

  24. Lee KH, Choi IS, Kim YG, Yang DJ, Bae HJ (2011) Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresour Technol 102:8191–8198

    Article  CAS  Google Scholar 

  25. Takei T, Ikeda K, Ijima H, Kawakami K (2011) Fabrication of poly (vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization. Process Biochem 46:566–571

    Article  CAS  Google Scholar 

  26. Pai O, Banoth L, Ghosh S, Chisti Y, Banerjee UC (2014) Biotransformation of 3-cyanopyridine to nicotinic acid by free and immobilized cells of recombinant Escherichia coli. Process Biochem 49:655–659

    Article  CAS  Google Scholar 

  27. Cheng YM, Ma L, Deng C, Xu ZH, Chen JH (2014) Effect of PEG-mediated pore forming on Ca-alginate immobilization of nitrilase-producing bacteria Pseudomonas putida XY4. Bioprocess Biosyst Eng 37:1–6

    Article  Google Scholar 

  28. El-Hadi AA, El-Minofi HA (2012) Enhanced bioconversion of lactose by immobilized cells of Bacillus subtilis using different matrices. Wudpecker J Agric Res 1:415–423

    Google Scholar 

  29. Chen J, Zheng YG, Shen YC (2008) Biosynthesis of p-methoxyphenylacetic acid from p-methoxyphenylacetonitrile by immobilized Bacillus subtilis ZJB-063. Process Biochem 43:978–983

    Article  CAS  Google Scholar 

  30. Zhang YW, Prabhu P, Lee JK (2010) Alginate immobilization of recombinant Escherichia coli whole cells harboring l-arabinose isomerase for l-ribulose production. Bioprocess Biosyst Eng 33:741–748

    Article  CAS  Google Scholar 

  31. Lu D, Zhang Y, Niu S, Wang L, Lin S, Wang C, Ye W, Yan C (2012) Study of phenol biodegradation using Bacillus amyloliquefaciens strain WJDB-1 immobilized in alginate–chitosan–alginate (ACA) microcapsules by electrochemical method. Biodegradation 23:209–219

    Article  CAS  Google Scholar 

  32. Chung TP, Tseng HY, Juang RS (2003) Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochem 38:1497–1507

    Article  CAS  Google Scholar 

  33. Graham D, Pereira R, Barfield D, Cowan D (2000) Nitrile biotransformations using free and immobilized cells of a thermophilic Bacillus spp. Enzyme Microb Tech 26:368–373

    Article  CAS  Google Scholar 

  34. Sharma NN, Sharma M, Bhalla TC (2011) An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2. J Ind Microbiol Biotechnol 38:1235–1243

    Article  CAS  Google Scholar 

  35. Tanaka H, Matsumura M, Veliky IA (1984) Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol Bioeng 26:053–058

    Article  CAS  Google Scholar 

  36. Prasad S, Misra A, Jangir VP, Awasthi A, Raj J, Bhalla TC (2006) A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis. World J Microbiol Biotechnol 23:345–353

    Article  Google Scholar 

  37. Shaw NM, Robins KT, Kiener A (2003) Lonza: 20 years of biotransformations. Adv Synth Catal 345:425–435

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21206055), Natural Science Foundation of Jiangsu Province (BK2012127, BK20140133), and National High Technology Research and Development Program of China (No. 2012AA022204C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hong Xu.

Additional information

H. Li and T. Yang have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yang, T., Gong, JS. et al. Improving the catalytic potential and substrate tolerance of Gibberella intermedia nitrilase by whole-cell immobilization. Bioprocess Biosyst Eng 38, 189–197 (2015). https://doi.org/10.1007/s00449-014-1258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1258-6

Keywords

Navigation