Skip to main content
Log in

Enhancement of extracellular pullulanase production from recombinant Escherichia coli by combined strategy involving auto-induction and temperature control

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Pullulanase was extracellularly produced with an engineered Escherichia coli with a combined strategy. When auto-induction instead of isopropyl β-d-1-thiogalactopyranoside (IPTG) induction method was implemented, we observed increased extracellular activity (4.2 U ml−1) and cell biomass (7.95 g DCW l−1). Subsequent investigation of temperature effect on fermentation showed cultivation performed at 25 °C presented the highest extracellular titer and cell biomass. In order to reduce the extended production period, we developed a two-stage temperature control strategy. Its application not only reduced the production period from 72 to 36 h, but also further enhanced the yield of extracellular pullulanase. Finally, with a view to releasing more intracellular pullulanase, we altered cell membrane permeability with various medium additives. As a result, extracellular titer was elevated to 68.23 U ml−1, nearly 35-fold higher than that with IPTG induction method. The combined strategy developed here may be useful for the production of other extracellular proteins by recombinant E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh RS, Saini GK, Kennedy JF (2011) Continuous hydrolysis of pullulan using covalently immobilized pullulanase in a packed bed reactor. Carbohyd Polym 83:672–675

    Article  CAS  Google Scholar 

  2. Kunamneni A, Singh S (2006) Improved high thermal stability of pullulanase from a newly isolated thermophilic Bacillus sp AN-7. Enzyme Microb Technol 39:1399–1404

    Article  CAS  Google Scholar 

  3. Walker GJ (1968) Metabolism of the reserve polysaccharide of Streptococcus mitis. Some properties of a pullulanase. Biochem J 108:33–40

    CAS  Google Scholar 

  4. Nair SU, Singhal RS, Kamat MY (2006) Enhanced production of thermostable pullulanase type I using Bacillus cereus FDTA 13 and its mutant. Food Technol Biotechnol 44:275–282

    CAS  Google Scholar 

  5. Bertoldo C, Duffner F, Jorgensen PL, Antranikian G (1999) Pullulanase type I from Fervidobacterium pennavorans Ven5: cloning, sequencing, and expression of the gene and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 65:2084–2091

    CAS  Google Scholar 

  6. Bertoldo C, Armbrecht M, Becker F, Schafer T, Antranikian G, Liebl W (2004) Cloning, sequencing, and characterization of a heat- and alkali-stable type I pullulanase from Anaerobranca gottschalkii. Appl Environ Microbiol 70:3407–3416

    Article  CAS  Google Scholar 

  7. Nair SU, Singhal RS, Kamat MY (2007) Induction of pullulanase production in Bacillus cereus FDTA-13. Bioresour Technol 98:856–859

    Article  CAS  Google Scholar 

  8. Ben Messaoud E, Ben Ammar Y, Mellouli L, Bejar S (2002) Thermostable pullulanase type I from new isolated Bacillus thermoleovorans US105: cloning, sequencing and expression of the gene in E. coli. Enzyme Microb Technol 31:827–832

    Article  CAS  Google Scholar 

  9. Takizawa N, Murooka Y (1984) Intergeneric transfer of the pullulanase gene between Klebsiella aerogenes and Escherichia coli by in vivo genetic manipulation. Agric Biol Chem 48:1451–1458

    Article  CAS  Google Scholar 

  10. Takizawa N, Murooka Y (1985) Cloning of the pullulanase gene and overproduction of pullulanase in Escherichia coli and Klebsiella aerogenes. Appl Environ Microbiol 49:294–298

    CAS  Google Scholar 

  11. Li Y, Zhang L, Niu D, Wang Z, Shi G (2012) Cloning, expression, characterization, and biocatalytic investigation of a novel bacilli thermostable type I pullulanase from Bacillus sp. CICIM 263. J Agric Food Chem 60:11164–11172

    Article  CAS  Google Scholar 

  12. Kang J, Park K-M, Choi K-H, Park C-S, Kim G-E, Kim D, Cha J (2011) Molecular cloning and biochemical characterization of a heat-stable type I pullulanase from Thermotoga neapolitana. Enzyme Microb Technol 48:260–266

    Article  CAS  Google Scholar 

  13. Takizawa N, Shiro H, Hatta T, Nagao K, Kiyohara H (1991) Extracellular production of Klebsiella pullulanase by Escherichia coli that carries the pullulanase secretion genes. Agric Biol Chem 55:1467–1473

    Article  CAS  Google Scholar 

  14. Semba H, Ichige E, Imanaka T, Atomi H, Aoyagi H (2008) Efficient production of active form of recombinant cassava hydroxynitrile lyase using Escherichia coli in low-temperature culture. Appl Microbiol Biotechnol 79:563–569

    Article  CAS  Google Scholar 

  15. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  Google Scholar 

  16. Sreenath HK, Bingman CA, Buchan BW, Seder KD, Burns BT, Geetha HV, Jeon WB, Vojtik FC, Aceti DJ, Frederick RO, Phillips GN Jr, Fox BG (2005) Protocols for production of selenomethionine-labeled proteins in 2-L polyethylene terephthalate bottles using auto-induction medium. Protein Expr Purif 40:256–267

    Article  CAS  Google Scholar 

  17. Blommel PG, Becker KJ, Duvnjak P, Fox BG (2007) Enhanced bacterial protein expression during auto-induction obtained by alteration of lac repressor dosage and medium composition. Biotechnol Prog 23:585–598

    Article  CAS  Google Scholar 

  18. Sivashanmugam A, Murray V, Cui C, Zhang Y, Wang J, Li Q (2009) Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci 18:936–948

    Article  CAS  Google Scholar 

  19. Li Z, Nimtz M, Rinas U (2011) Optimized procedure to generate heavy isotope and selenomethionine-labeled proteins for structure determination using Escherichia coli-based expression systems. Appl Microbiol Biotechnol 92:823–833

    Article  CAS  Google Scholar 

  20. Chen W, Nie Y, Xu Y (2013) Signal peptide-independent secretory expression and characterization of pullulanase from a newly isolated Klebsiella variicola SHN-1 in Escherichia coli. Appl Biochem Biotechnol 169:41–54

    Article  CAS  Google Scholar 

  21. Ding R, Li Z, Chen S, Wu D, Wu J, Chen J (2010) Enhanced secretion of recombinant α-cyclodextrin glucosyltransferase from E. coli by medium additives. Process Biochem 45:880–886

    Article  CAS  Google Scholar 

  22. Li B, Wang L, Su L, Chen S, Li Z, Chen J, Wu J (2012) Glycine and Triton X-100 enhanced secretion of recombinant α-CGTase mediated by OmpA signal peptide in Escherichia coli. Biotechnol Bioprocess Eng 17:1128–1134

    Article  CAS  Google Scholar 

  23. Mergulhão FJM, Summers DK, Monteiro GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23:177–202

    Article  CAS  Google Scholar 

  24. Spadiut O, Posch G, Ludwig R, Haltrich D, Peterbauer CK (2010) Evaluation of different expression systems for the heterologous expression of pyranose 2-oxidase from Trameters multicolor in E. coli. Microb Cell Fact 9:14

    Article  CAS  Google Scholar 

  25. Wong MS, Wu S, Causey TB, Bennett GN, San K-Y (2008) Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metab Eng 10:97–108

    Article  CAS  Google Scholar 

  26. Mey M, Maeseneire S, Soetaert W, Vandamme E (2007) Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol 34:689–700

    Article  CAS  Google Scholar 

  27. Fang N, Zhong C, Liang X, Tang X, Tang B (2010) Improvement of extracellular production of a thermophilic subtilase expressed in Escherichia coli by random mutagenesis of its N-terminal propeptide. Appl Microbiol Biotechnol 85:1473–1481

    Article  CAS  Google Scholar 

  28. Kiefhaber T, Rudolph R, Kohler H–H, Buchner J (1991) Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Nat Biotechnol 9:825–829

    Article  CAS  Google Scholar 

  29. Yamabhai M, Emrat S, Sukasem S, Pesatcha P, Jaruseranee N, Buranabanyat B (2008) Secretion of recombinant Bacillus hydrolytic enzymes using Escherichia coli expression systems. J Biotechnol 133:50–57

    Article  CAS  Google Scholar 

  30. Chou C (2007) Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biotechnol 76:521–532

    Article  CAS  Google Scholar 

  31. Yan G, Cheng S, Zhao G, Wu S, Liu Y, Sun W (2003) A single residual replacement improves the folding and stability of recombinant cassava hydroxynitrile lyase in E. coli. Biotechnol Lett 25:1041–1047

    Article  CAS  Google Scholar 

  32. March JC, Eiteman MA, Altman E (2002) Expression of an anaplerotic enzyme, pyruvate carboxylase, improves recombinant protein production in Escherichia coli. Appl Environ Microbiol 68:5620–5624

    Article  CAS  Google Scholar 

  33. Sorensen H, Mortensen K (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128

    Article  CAS  Google Scholar 

  34. Li Z, Gu Z, Wang M, Du G, Wu J, Chen J (2010) Delayed supplementation of glycine enhances extracellular secretion of the recombinant α-cyclodextrin glycosyltransferase in Escherichia coli. Appl Microbiol Biotechnol 85:553–561

    Article  CAS  Google Scholar 

  35. Yang J, Moyana T, MacKenzie S, Xia Q, Xiang J (1998) One hundred seventy-fold increase in excretion of an FV fragment-tumor necrosis factor alpha fusion protein (sFV/TNF-α) from Escherichia coli caused by the synergistic effects of glycine and Triton X-100. Appl Environ Microbiol 64:2869–2874

    CAS  Google Scholar 

  36. Thies E, Jenkins T, Stutzenberger F (1994) Effects of the detergent Tween 80 on Thermomonospora curvata. World J Microbiol Biotechnol 10:657–663

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the Hi-Tech Research and Development Program of China (863 Program) (no. 2012AA022207), the National Key Basic Research and Development Program of China (973 Program) (no. 2011CB710800 and 2009CB724706), the Program of Introducing Talents of Discipline to Universities (111 Project) (111-2-06), and the High-end Foreign Experts Recruitment Program (GDW20123200113) are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Nie or Yan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WB., Nie, Y., Xu, Y. et al. Enhancement of extracellular pullulanase production from recombinant Escherichia coli by combined strategy involving auto-induction and temperature control. Bioprocess Biosyst Eng 37, 601–608 (2014). https://doi.org/10.1007/s00449-013-1026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1026-z

Keywords

Navigation