Skip to main content

Advertisement

Log in

Spatio-temporal evolution of the magma plumbing system at Masaya Caldera, Nicaragua

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Volcanic unrest in calderas can be exhibited through a variety of different mechanisms, such as changes in seismicity and ground deformation, as well as variations in thermal and/or gas emissions. However, not all caldera unrest results in explosive caldera-forming volcanic activity. Alternative activity may include periods of quiescence, passive degassing, effusive activity (e.g., lava flows lava lakes and dome formation), and/or magma injection into the shallow magma system. In this study, we perform a long-term study (spanning 2011–2019) of ground deformation at Masaya using six Interferometric Synthetic Aperture Radar (InSAR) datasets. Masaya exhibited bi-modal eruptive behavior between 2011 and 2019, dominated by open-vent lava lake activity and punctuated by short-lived summit explosions. The Multidimensional Small BAseline Subset time-series analysis approach was used to take advantage of the temporally dense SAR datasets. Between 2012 and early 2015, we observed degassing-induced pressurization of the Masaya Central Reservoir (MCR) at an estimated volume change rate of ~ 0.28 \(\times\) 106 m3/year. In May 2015, magma was supplied into the MCR at a rate of ~ 5.6 \(\times\) 106 m3/year, leading to the appearance of a summit lava lake in December 2015. Over the next 6 months, rapid magma supply continued to drive lava lake activity and was followed by a cessation of magma supply into the MCR for another 11 months. From mid-2017 to end-2019, we observed depressurization (~ − 0.67 \(\times\) 106 m3/year) of the MCR due to a lack of magma supply and continued high rates of degassing in-conjunction with declining lava lake activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Metadata are available in Online Resources 1 and 2. Data are available upon request from the authors.

Code availability

Codes used are available upon request from the authors.

References

  • Acocella V, Di Lorenzo R, Newhall CG, Scandone R (2015) An overview of recent (1988 to 2014) caldera unrest: knowledge and perspectives. Rev Geophys 53:896–955. https://doi.org/10.1029/88EO01108

    Article  Google Scholar 

  • Aiuppa A, Bitetto M, Francofonte V et al (2017) A CO2-gas precursor to the March 2015 Villarrica volcano eruption. Geochemistry, Geophys Geosystems 18:2120–2132. https://doi.org/10.1002/2017GC006892

    Article  Google Scholar 

  • Aiuppa A, de Moor JM, Arellano S et al (2018) Tracking formation of a lava lake from ground and space: Masaya volcano (Nicaragua), 2014–2017. Geochemistry, Geophys Geosystems 19:1–20. https://doi.org/10.1002/2017GC007227

    Article  Google Scholar 

  • Albino F, Pinel V, Massol H, Collombet M (2011) Conditions for detection of ground deformation induced by conduit flow and evolution. J Geophys Res 116:1–18. https://doi.org/10.1029/2010JB007871

    Article  Google Scholar 

  • Allard P (1997) Endogenous magma degassing and storage at Mount Etna. Geophys Res Lett 24:2,219–2,222. https://doi.org/10.1029/97GL02101

  • Andres RJ, Rose WI, Kyle PR et al (1991) Excessive sulfur dioxide emissions from Chilean volcanoes. J Volcanol Geotherm Res 46:323–329. https://doi.org/10.1016/0377-0273(91)90091-D

    Article  Google Scholar 

  • Bamber EC, Arzilli F, Polacci M et al (2020) Pre- and syn-eruptive conditions of a basaltic Plinian eruption at Masaya volcano, Nicaragua: the Masaya triple layer (2.1 ka). J Volcanol Geotherm Res 392:106761. https://doi.org/10.1016/j.jvolgeores.2019.106761

    Article  Google Scholar 

  • Battaglia M, Cervelli PF, Murray JR (2013b) dMODELS: a MATLAB software package for modeling crustal deformation near active faults and volcanic centers. J Volcanol Geotherm Res 254:1–4. https://doi.org/10.1016/j.jvolgeores.2012.12.018

    Article  Google Scholar 

  • Battaglia M, Cervelli PF, Murray JR (2013a) Modeling crustal deformation near active faults and volcanic centers — a catalog of deformation models. In: U.S. Geological Survey Techniques and Methods, Book 13. p 96

  • Bell AF, La Femina PC, Ruiz M et al (2021) Caldera resurgence during the 2018 eruption of Sierra Negra volcano, Galápagos Islands. Nat Commun 12:1–9. https://doi.org/10.1038/s41467-021-21596-4

    Article  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40:2375–2383. https://doi.org/10.1109/TGRS.2002.803792

    Article  Google Scholar 

  • Bice D (1980) Tephra stratigraphy and physical aspects of recent volcanism near Managua, Nicaragua. University of California

  • Blake S (1981) Volcanism and the dynamics of open magma chambers. Nature 289:783–785

    Article  Google Scholar 

  • Bluth GJS, Rose WI (2004) Observations of eruptive activity at Santiaguito volcano, Guatemala. J Volcanol Geotherm Res 136:297–302. https://doi.org/10.1016/j.jvolgeores.2004.06.001

    Article  Google Scholar 

  • Campion R, Delgado-Granados H, Legrand D, et al (2018) Breathing and coughing: the extraordinarily high degassing of Popocatépetl Volcano investigated with an SO2 camera. Front Earth Sci 6:. https://doi.org/10.3389/feart.2018.00163

  • Caravantes González G, Rymer H, Zurek J, et al (2019) Structures controlling volcanic activity within Masaya caldera, Nicaragua. Volcanica 2:25–44. https://doi.org/10.30909/vol.02.01.2544.

  • Carn SA, Fioletov VE, McLinden CA et al (2017) A decade of global volcanic SO2 emissions measured from space. Sci Rep 7:1–12. https://doi.org/10.1038/srep44095

    Article  Google Scholar 

  • Chaussard E, Amelung F, Aoki Y (2013) Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. J Geophys Res Solid Earth 118:3957–3969. https://doi.org/10.1002/jgrb.50288

    Article  Google Scholar 

  • Cogliati S, Sherlock S, Halton A et al (2021) Tracking the behaviour of persistently degassing volcanoes using noble gas analysis of Pele’s hairs and tears: a case study of the Masaya volcano (Nicaragua). J Volcanol Geotherm Res 414:1–11. https://doi.org/10.1016/j.jvolgeores.2021.107212

    Article  Google Scholar 

  • Coppola D, Laiolo M, Piscopo D, Cigolini C (2013) Rheological control on the radiant density of active lava flows and domes. J Volcanol Geotherm Res 249:39–48. https://doi.org/10.1016/j.jvolgeores.2012.09.005

    Article  Google Scholar 

  • Coppola D, Laiolo M, Cigolini C et al (2016) Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system. In: Harris AJL, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions, 426th edn. Geological Society Special Publications, London, pp 181–205

    Google Scholar 

  • Coppola D, Laiolo M, Massimetti F, Cigolini C (2019) Monitoring endogenous growth of open-vent volcanoes by balancing thermal and SO2 emissions data derived from space. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-45753-4

    Article  Google Scholar 

  • Coppola D, Laiolo M, Cigolini C et al (2020) Thermal remote sensing for global volcano monitoring: experiences from the MIROVA system. Front Earth Sci 7:1–21. https://doi.org/10.3389/feart.2019.00362

    Article  Google Scholar 

  • Costa F, Andreastuti S, Bouvet de Maisonneuve C, Pallister JS (2013) Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J Volcanol Geotherm Res 261:209–235. https://doi.org/10.1016/j.jvolgeores.2012.12.025

    Article  Google Scholar 

  • Costantini M (1998) A novel phase unwrapping method based on network programming. IEEE Trans Geosci Remote Sens 36:813–821. https://doi.org/10.1109/36.673674

    Article  Google Scholar 

  • de Moor JM, Kern C, Avard G et al (2017) A new sulfur and carbon degassing inventory for the Southern Central American Volcanic Arc : the importance of accurate time-series datasets and possible tectonic processes responsible for temporal variations in arc-scale volatile emissions. Geochemistry, Geophys Geosystems 18:4437–4468. https://doi.org/10.1002/2017GC007141

    Article  Google Scholar 

  • Delgado F, Grandin R (2021) Dynamics of episodic magma injection and migration at Yellowstone Caldera: revisiting the 2004–2009 episode of caldera uplift with InSAR and GPS data. J Geophys Res Solid Earth 126:1–28. https://doi.org/10.1029/2021jb022341

    Article  Google Scholar 

  • Delgado F, Pritchard ME, Ebmeier S et al (2017) Recent unrest (2002–2015) imaged by space geodesy at the highest risk Chilean volcanoes: Villarrica, Llaima, and Calbuco (Southern Andes). J Volcanol Geotherm Res 344:270–288. https://doi.org/10.1016/j.jvolgeores.2017.05.020

    Article  Google Scholar 

  • Denlinger RP, Hoblitt RP (1999) Cyclic eruptive behavior of silicic volcanoes. Geology 27:459–462. https://doi.org/10.1130/0091-7613(1999)027%3c0459:CEBOSV%3e2.3.CO;2

    Article  Google Scholar 

  • Ebmeier SK (2016) Application of independent component analysis to multitemporal InSAR data with volcanic case studies. J Geophys Res Solid Earth 121:8970–8986. https://doi.org/10.1002/2016JB013765

    Article  Google Scholar 

  • Ebmeier SK, Biggs J, Mather T a., Amelung F (2013) On the lack of InSAR observations of magmatic deformation at Central American volcanoes. J Geophys Res Solid Earth 118:2571–2585. https://doi.org/10.1002/jgrb.50195

  • Feigl KL, Le Mével H, Tabrez Ali S et al (2014) Rapid uplift in Laguna del Maule volcanic field of the Andean southern volcanic zone (Chile) 2007–2012. Geophys J Int 196:885–901. https://doi.org/10.1093/gji/ggt438

    Article  Google Scholar 

  • Fioletov VE, McLinden CA, Krotkov N et al (2016) A global catalogue of large SO2 sources and emissions derived from the ozone monitoring instrument. Atmos Chem Phys 16:11,497-11,519. https://doi.org/10.5194/acp-16-11497-2016

    Article  Google Scholar 

  • Francis P, Oppenheimer C, Stevenson D (1993) Endogenous growth of persistently active volcanoes. Nature 366:554–557

    Article  Google Scholar 

  • Fukushima Y, Cayol V, Durand P (2005) Finding realistic dike models from interferometric synthetic aperture radar data: the February 2000 eruption at Piton de la Fournaise. J Geophys Res 110:1–15. https://doi.org/10.1029/2004JB003268

    Article  Google Scholar 

  • Garthwaite MC, Miller VL, Saunders S, et al (2019) A simplified approach to operational InSAR monitoring of volcano deformation in low-and middle-income countries: case study of Rabaul Caldera, Papua New Guinea. Front Earth Sci 6:. https://doi.org/10.3389/feart.2018.00240

  • Gatelli F, Guarnieri AM, Parizzi F et al (1994) The Wavenumber shift in SAR interferometry. IEEE Trans Geosci Remote Sens 32:855–865. https://doi.org/10.1109/36.298013

    Article  Google Scholar 

  • Girona T, Costa F, Newhall C, Taisne B (2014) On depressurization of volcanic magma reservoirs by passive degassing. J Geophys Res Solid Earth 119:8667–8687. https://doi.org/10.1002/2014JB011368

    Article  Google Scholar 

  • Girona T, Costa F, Schubert G (2015) Degassing during quiescence as a trigger of magma ascent and volcanic eruptions. Sci Rep 5:1–7. https://doi.org/10.1038/srep18212

    Article  Google Scholar 

  • Global Volcanism Program (2013) Masaya (344100). In: Venzke E (ed) Volcanoes of the world, v. 4.8.6. Smithsonian Institution

  • Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25:4035–4038. https://doi.org/10.1029/1998GL900033

    Article  Google Scholar 

  • Harris AJL (2009) The pit-craters and pit-crater-filling lavas of Masaya volcano. Bull Volcanol 71:541–558. https://doi.org/10.1007/s00445-008-0241-y

    Article  Google Scholar 

  • Harris AJL, Stevenson DS (1997) Thermal observations of degassing open conduits and fumaroles at stromboli and vulcano using remotely sensed data. J Volcanol Geotherm Res 76:175–198. https://doi.org/10.1016/S0377-0273(96)00097-2

    Article  Google Scholar 

  • Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70:1–22. https://doi.org/10.1007/s00445-007-0120-y

    Article  Google Scholar 

  • Hlinka L, Longpré MA, Pérez W et al (2021) Top–down control on eruptive style at Masaya volcano inferred from melt composition. Earth Planet Sci Lett 572:117138. https://doi.org/10.1016/j.epsl.2021.117138

    Article  Google Scholar 

  • Huppert HE, Woods AW (2002) The role of volatiles in magma chamber dynamics. Nature 420:493–495. https://doi.org/10.1038/nature01211

    Article  Google Scholar 

  • INETER (2012a) Boletín Mensual Sismos y Volcanes de Nicaragua, Abril 2012

  • INETER (2012b) Boletín Mensual: Sismos y Volcanes de Nicaragua, Mayo 2012

  • INETER (2012c) Boletín Mensual: Sismos y Volcanes de Nicaragua, Junio 2012

  • INETER (2012d) Boletín Mensual: Sismos y Volcanes de Nicaragua, Julio 2012

  • INETER (2012e) Boletín mensual Sismos y Volcanes de Nicaragua, Diciembre 2012

  • INETER (2013a) Boletín mensual Sismos y Volcanes de Nicaragua, Abril 2013

  • INETER (2013b) Boletín mensual Sismos y Volcanes de Nicaragua, Septiembre 2013

  • INETER (2014a) Boletín mensual Sismos y Volcanes de Nicaragua, Marzo 2014

  • INETER (2014b) Boletín mensual Sismos y Volcanes de Nicaragua, Abril 2014

  • INETER (2014c) Boletín mensual Sismos y Volcanes de Nicaragua, Septiembre 2014

  • INETER (2014d) Boletín mensual Sismos y Volcanes de Nicaragua, Octubre 2014

  • INETER (2014e) Boletín mensual Sismos y Volcanes de Nicaragua, Noviembre 2014

  • INETER (2014f) Boletín mensual Sismos y Volcanes de Nicaragua, Diciembre 2014

  • INETER (2015a) Bolet{í}n mensual Sismos y Volcanes de Nicaragua, Diciembre 2015

  • INETER (2015b) Boletín mensual Sismos y Volcanes de Nicaragua, Abril 2015

  • INETER (2015c) Boletín mensual Sismos y Volcanes de Nicaragua, Mayo 2015

  • INETER (2015d) Boletín mensual Sismos y Volcanes de Nicaragua, Septiembre 2015

  • INETER (2015e) Boletín mensual Sismos y Volcanes de Nicaragua, Agosto 2015

  • INETER (2015f) Boletín mensual Sismos y Volcanes de Nicaragua, Noviembre 2015

  • INETER (2015g) Boletín mensual Sismos y Volcanes de Nicaragua, Diciembre 2015

  • INETER (2016a) Boletín mensual Sismos y Volcanes de Nicaragua, Enero 2016

  • INETER (2016b) Boletín Mensual: Sismos y Volcanes de Nicaragua, Febrero 2016

  • INETER (2016c) Boletín mensual Sismos y Volcanes de Nicaragua, Marzo 2016

  • INETER (2016d) Boletín mensual Sismos y Volcanes de Nicaragua, Julio 2016

  • INETER (2016e) Boletín Mensual Sismos y Volcanes de Nicaragua, Agosto 2016

  • INETER (2016f) Boletín mensual Sismos y Volcanes de Nicaragua, Noviembre 2016

  • INETER (2017a) Boletín mensual Sismos y Volcanes de Nicaragua, Abril 2017

  • INETER (2017b) Boletín mensual Sismos y Volcanes de Nicaragua, Enero 2017

  • INETER (2017c) Boletín mensual Sismos y Volcanes de Nicaragua, Mayo 2017

  • INETER (2019a) Boletín mensual Sismos y Volcanes de Nicaragua, Diciembre 2019

  • INETER (2019b) Boletín mensual Sismos y Volcanes de Nicaragua, Junio 2019

  • INETER (2019c) Boletín mensual Sismos y Volcanes de Nicaragua, Julio 2019

  • INETER (2019d) Boletín mensual Sismos y Volcanes de Nicaragua, Octubre 2019

  • Jaupart C, Vergniolle S (1988) Laboratory models of Hawaiian and Strombolian eruptions. Nature 331:58–60

    Article  Google Scholar 

  • Johnson DJ, Sigmundsson F, Delaney PT (2000) Comment on “Volume of magma accumulation or withdrawl estimated from surface uplift or subsidence with application to the 1960 collapse of Kilauea volcano” by P.T. Delaney and D.F McTigue. Bull Volcanol 61:491–493. https://doi.org/10.1007/s004450050006

    Article  Google Scholar 

  • Kazahaya K, Shinohara H, Saito G (1994) Excessive degassing of Izu-Oshima volcano: magma convection in a conduit. Bull Volcanol 56:207–216. https://doi.org/10.1007/BF00279605

    Article  Google Scholar 

  • Kennedy BM, Holohan EP, Stix J et al (2018) Magma plumbing beneath collapse caldera volcanic systems. Earth-Science Rev 177:404–424. https://doi.org/10.1016/j.earscirev.2017.12.002

    Article  Google Scholar 

  • Kilbride BMC, Edmonds M, Biggs J (2016) Observing eruptions of gas-rich compressible magmas from space. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms13744

    Article  Google Scholar 

  • Kutterolf S, Freundt A, Pérez W et al (2007) Late pleistocene to holocene temporal succession and magnitudes of highly-explosive volcanic eruptions in west-central Nicaragua. J Volcanol Geotherm Res 163:55–82. https://doi.org/10.1016/j.jvolgeores.2007.02.006

    Article  Google Scholar 

  • Lamb OD, Lamur A, Díaz-Moreno A et al (2019) Disruption of long-term effusive-explosive activity at Santiaguito, Guatemala. Front Earth Sci 6:1–14. https://doi.org/10.3389/feart.2018.00253

    Article  Google Scholar 

  • Li C, Joiner J, Krotkov NA, Bhartia PK (2013) A fast and sensitive new satellite SO2 retrieval algorithm based on principal component analysis: application to the ozone monitoring instrument. Geophys Res Lett 40:6,314–6,318. https://doi.org/10.1002/2013GL058134

  • Lundgren P, Girona T, Bato MG et al (2020) The dynamics of large silicic systems from satellite remote sensing observations: the intriguing case of Domuyo volcano, Argentina. Sci Rep 10:1–15. https://doi.org/10.1038/s41598-020-67982-8

    Article  Google Scholar 

  • Lundgren P, Usai S, Sansosti E, et al (2001) Modeling surface deformation observed with synthetic aperture radar interferometry at Campi Flegrei caldera. J Geophys Res 106:19,355–19,366. 0148–0227/01/2001JB000194

  • MacQueen P, Delgado F, Reath K et al (2020) Volcano-tectonic interactions at Sabancaya volcano, Peru: eruptions, magmatic inflation, moderate earthquakes, and fault creep. J Geophys Res Solid Earth 125:1–25. https://doi.org/10.1029/2019JB019281

    Article  Google Scholar 

  • Martin RS, Sawyer GM, Spampinato L et al (2010) A total volatile inventory for Masaya Volcano, Nicaragua. J Geophys Res 115:1–12. https://doi.org/10.1029/2010JB007480

    Article  Google Scholar 

  • Masterlark T (2003) Finite element model predictions of static deformation from dislocation sources in a subduction zone: sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions. J Geophys Res 108:1–17. https://doi.org/10.1029/2002jb002296

    Article  Google Scholar 

  • McBirney AR (1956) The Nicaraguan volcano Masaya and its caldera. EOS, Trans Am Geophys Union 37:83–96

    Article  Google Scholar 

  • McTigue DF (1987) Elastic stress and deformation near a finite spherical magma body: resolution of the point source paradox. J Geophys Res 92:12,931–12,940. https://doi.org/10.1029/JB092iB12p12931

  • Murray J, Caravantes Gonzalez G, Rymer H, et al (2017) Recent inflation at Masaya volcano, Nicaragua. In: IAVCEI 2017 Scientific Assembly: Fostering integrative studies of volcanoes. IAVCEI, Portland, Oregon, p 739

  • NASA GSFC (2021) Multi-decadal sulfur dioxide climatology from satellite intruments. https://so2.gsfc.nasa.gov/measures.html. Accessed 10 Aug 2021

  • National Academies of Sciences E and M (2017) Volcanic eruptions and their repose, unrest, precursors, and timing. Washington, DC

  • Newhall CG (2007) Volcanology 101 for seismologists. treatise on geophysics. Elsevier, Amsterdam, Netherlands, pp 351–388

    Chapter  Google Scholar 

  • Newhall CG, Dzurisin D (1988) Historical unrest at large calderas of the world

  • NOAA Satellite and Information Service (2015) 2015 Volcano Ash Advisory Archive

  • NOAA Satellite and Information Service (2016) 2016 Volcano Ash Advisory Archive

  • NOAA Satellite and Information Service (2017) 2017 Volcano Ash Advisory Archive

  • Obermann A, Molinari I, Métaxian JP et al (2019) Structure of Masaya and Momotombo volcano, Nicaragua, investigated with a temporary seismic network. J Volcanol Geotherm Res 379:1–11. https://doi.org/10.1016/j.jvolgeores.2019.04.013

    Article  Google Scholar 

  • Palma JL, Calder ES, Basualto D et al (2008) Correlations between SO2 flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile. J Geophys Res Solid Earth 113:1–23. https://doi.org/10.1029/2008JB005577

    Article  Google Scholar 

  • Parfitt EA, Wilson L (1995) Explosive volcanic eruptions—IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys J Int 121:226–232. https://doi.org/10.1111/j.1365-246X.1995.tb03523.x

    Article  Google Scholar 

  • Patrick MR, Harris AJL, Ripepe M et al (2007) Strombolian explosive styles and source conditions: insights from thermal (FLIR) video. Bull Volcanol 69:769–784. https://doi.org/10.1007/s00445-006-0107-0

    Article  Google Scholar 

  • Patrick MR, Anderson KR, Poland MP et al (2015) Lava lake level as a gauge of magma reservoir pressure and eruptive hazard. Geology 43:831–834. https://doi.org/10.1130/G36896.1

    Article  Google Scholar 

  • Pérez W, Freundt A (2006) The youngest highly explosive basaltic eruptions from Masaya Caldera (Nicaragua): stratigraphy and hazard assessment. Geol Soc Am Sp Pap 412:189–207. https://doi.org/10.1130/2006.2412(10)

    Article  Google Scholar 

  • Pérez W, Freundt A, Kutterolf S, Schmincke HU (2009) The Masaya triple layer: a 2100 year old basaltic multi-episodic Plinian eruption from the Masaya Caldera Complex (Nicaragua). J Volcanol Geotherm Res 179:191–205. https://doi.org/10.1016/j.jvolgeores.2008.10.015

    Article  Google Scholar 

  • Pérez W, Freundt A, Kutterolf S (2020) The basaltic plinian eruption of the ~6 ka San Antonio Tephra and formation of the Masaya caldera, Nicaragua. J Volcanol Geotherm Res 401:1–17. https://doi.org/10.1016/j.jvolgeores.2020.106975

    Article  Google Scholar 

  • Poland MP, Miklius A, Jeff Sutton A, Thornber CR (2012) A mantle-driven surge in magma supply to Kīlauea volcano during 2003–2007. Nat Geosci 5:295–300. https://doi.org/10.1038/ngeo1426

    Article  Google Scholar 

  • Reath K, Pritchard M, Poland M et al (2019) Thermal, deformation, and degassing remote sensing time series (CE 2000–2017) at the 47 most active volcanoes in Latin America: implications for Volcanic Systems. J Geophys Res Solid Earth 124:195–218. https://doi.org/10.1029/2018JB016199

    Article  Google Scholar 

  • Ripepe M, Lacanna G, Pistolesi M et al (2021) Ground deformation reveals the scale-invariant conduit dynamics driving explosive basaltic eruptions. Nat Commun 12:1–8. https://doi.org/10.1038/s41467-021-21722-2

    Article  Google Scholar 

  • Rivalta E, Segall P (2008) Magma compressibility and the missing source for some dike intrusions. Geophys Res Lett 35:1–5. https://doi.org/10.1029/2007GL032521

    Article  Google Scholar 

  • Rizzoli P, Martone M, Gonzalez C et al (2017) Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J Photogramm Remote Sens 132:119–139. https://doi.org/10.1016/j.isprsjprs.2017.08.008

    Article  Google Scholar 

  • Rose WI, Palma JL, Granados HD, Varley N (2013) Open-vent volcanism and related hazards: overview. In: Rose WI, Palma JL, Delgado Granados H, Varley N (eds) Understanding open-vent volcanism and related hazards, geological. The Geological Society of America, pp vii–xiii

  • Rymer H, van Wyk de Vries B, Stix J, Williams-Jones G (1998) Pit crater structure and processes governing persistent activity at Masaya Volcano, Nicaragua. Bull Volcanol 59:345–355. https://doi.org/10.1007/s004450050196

  • Rymer H, Williams-Jones G, Murray J, et al (2017) Precursors to the current activity at Masaya volcano, Nicaragua. In: IAVCEI 2017 Scientific Assembly: fostering integrative studies of volcanoes. IAVCEI, Portland, Oregon, p 939

  • Samsonov S, d’Oreye N (2012) Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province. Geophys J Int 191:1095–1108. https://doi.org/10.1111/j.1365-246X.2012.05669.x

    Article  Google Scholar 

  • Samsonov SV, d’Oreye N (2017) Multidimensional small baseline subset (MSBAS) for two-dimensional deformation analysis: case study Mexico City. Can J Remote Sens 43:318–329. https://doi.org/10.1080/07038992.2017.1344926

    Article  Google Scholar 

  • Samsonov S V. (2019) User manual, source code, and test set for MSBASv3 (multidimensional small baseline subset version 3) for one- and two-dimensional deformation analysis

  • Segall P (2010) Volcano deformation. earthquake and volcano deformation. Princeton University Press, Princeton, N.J., pp 200–254

    Chapter  Google Scholar 

  • Seropian G, Kennedy BM, Walter TR et al (2021) A review framework of how earthquakes trigger volcanic eruptions. Nat Commun 12:1–13. https://doi.org/10.1038/s41467-021-21166-8

    Article  Google Scholar 

  • Shinohara H (2008) Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev Geophys 46:1–31. https://doi.org/10.1029/2007RG000244

    Article  Google Scholar 

  • Shreve T, Grandin R, Boichu M, et al (2019) From prodigious volcanic degassing to caldera subsidence and quiescence at Ambrym (Vanuatu): the influence of regional tectonics. Sci Rep 1–13. https://doi.org/10.1038/s41598-019-55141-7

  • Shreve T, Grandin R, Boichu M (2021) Can high rates of passive volcanic gas emissions induce reservoir depressurization at Ambrym volcano (Vanuatu)? In: EGU General Assembly 2021

  • Simons BC, Cronin SJ, Eccles JD et al (2020) Spatiotemporal variations in eruption style, magnitude and vent morphology at Yasur volcano, Vanuatu: insights into the conduit system. Bull Volcanol 82:1–22. https://doi.org/10.1007/s00445-020-01394-4

    Article  Google Scholar 

  • Stephens KJ, Ebmeier SK, Young NK, Biggs J (2017) Transient deformation associated with explosive eruption measured at Masaya volcano (Nicaragua) using Interferometric Synthetic Aperture Radar. J Volcanol Geotherm Res 344:212–223. https://doi.org/10.1016/j.jvolgeores.2017.05.014

    Article  Google Scholar 

  • Stephens KJ, Wauthier C, Bussard RC et al (2020) Assessment of mitigation strategies for tropospheric phase contributions to InSAR time-series datasets over two Nicaraguan volcanoes. Remote Sens 12:1–31. https://doi.org/10.3390/rs12050782

    Article  Google Scholar 

  • Stephens KJ, Wauthier C (2018) Satellite geodesy captures offset magma supply associated with lava lake appearance at Masaya volcano, Nicaragua. Geophys Res Lett 1–14. https://doi.org/10.1002/2017GL076769

  • Stoiber RE, Williams SN, Huebert BJ (1986) Sulfur and halogen gases at Masaya Caldera Complex, Nicaragua: total flux and variations with time. J Geophys Res 91:12,215-12,231. https://doi.org/10.1029/JB091iB12p12215

    Article  Google Scholar 

  • Thivet S, Harris AJL, Gurioli L et al (2021) Multi-parametric field experiment links explosive activity and persistent degassing at Stromboli. Front Earth Sci 9:1–17. https://doi.org/10.3389/feart.2021.669661

    Article  Google Scholar 

  • U.S. Geological Survey (2021) Earthquake lists, maps, and statistics. https://www.usgs.gov/natural-hazards/earthquake-hazards/lists-maps-and-statistics. Accessed 27 May 2021

  • Walker JA, Williams SN, Kalamarides RI, Feigenson MD (1993) Shallow open-system evolution of basaltic magma beneath a subduction zone volcano: the Masaya Caldera Complex, Nicaragua. J Volcanol Geotherm Res 56:379–400. https://doi.org/10.1016/0377-0273(93)90004-B

    Article  Google Scholar 

  • Wauthier C, Roman DC, Poland MP (2016) Joint analysis of geodetic and earthquake fault-plane solution data to constrain magmatic sources: a case study from Kilauea Volcano. Earth Planet Sci Lett 455:38–48. https://doi.org/10.1016/j.epsl.2016.09.011

    Article  Google Scholar 

  • Wauthier C, Roman DC, Poland MP (2019) Modulation of seismic activity in Kīlauea’s upper east rift zone (Hawai’i) by summit pressurization. Geology 47:820–824. https://doi.org/10.1130/G46000.1

    Article  Google Scholar 

  • Werner C, Wegmüller U, Strozzi T, Wiesmann A (2000) GAMMA SAR and interferometric processing software. ERS-ENVISAT Symopisum. Gothenburg, Sweden, pp 211–219

    Google Scholar 

  • Wessel B, Huber M, Wolfhart C, et al (2018) Accuracy assessment of the global TanDEM-X digital elevation model with GPS data. ISPRS J Photogramm Remote Sensing2 139:171–182. https://doi.org/10.1016/j.isprsjprs.2017.08.008

  • Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. EOS, Trans Am Geophys Union 79:579. https://doi.org/10.1029/98EO00426

    Article  Google Scholar 

  • Williams-Jones G, Rymer H, Rothery DA (2003) Gravity changes and passive SO2 degassing at the Masaya Caldera Complex, Nicaragua. J Volcanol Geotherm Res 123:137–160. https://doi.org/10.1016/S0377-0273(03)00033-7

    Article  Google Scholar 

  • Wright TJ, Parsons BE, Lu Z (2004) Toward mapping surface deformation in three dimensions using InSAR. Geophys Res Lett 31:1–5. https://doi.org/10.1029/2003GL018827

    Article  Google Scholar 

  • Zurek J, Moune S, Williams-Jones G et al (2019) Melt inclusion evidence for long term steady-state volcanism at Las Sierras-Masaya volcano, Nicaragua. J Volcanol Geotherm Res 378:16–28. https://doi.org/10.1016/j.jvolgeores.2019.04.007

    Article  Google Scholar 

Download references

Acknowledgements

All SAR COSMO-SkyMed and 18 RADARSAT-2 scenes were provided through the Committee on Earth Observation Satellites (CEOS) Volcano Pilot and Demonstrator working group programs (http://ceos.org/ourwork/workinggroups/disasters/volcanoes/). Fifty RADARSAT-2 scenes were provided by the Canadian Space Agency under SOAR-EI project #5426: “Magma-tectonic interactions in the Managua graben”. All Copernicus Sentinel-1 data are open-access and processed by ESA and were retrieved from ASF DAAC. TanDEM-X 12 m resolution data was provided through the German Aerospace Center (DLR Proposal ID 1552, PI Christelle Wauthier). This work was also conducted as part of the “Optimizing satellite resources for the global assessment and mitigation of volcanic hazards” working group supported by the John Wesley Powell Center for Analysis and Synthesis, funded by the U.S. Geological Survey. MSBAS codes for time-series analysis are available online (https://insar.ca/software/msbas-2d). dMODELS scripts used for McTigue modeling are also available online (https://pubs.usgs.gov/tm/13/b1/). Masaya volcanic activity and seismic catalogues were accessed through INETER bulletins (https://webserver2.ineter.gob.ni//sis/bolsis/bolsis.html). Faults mapped in Fig. 1 were kindly provided by Armando Saballos (INETER). Gas geochemistry (CO2/SO2) data shown were kindly provided by Alessandro Aiuppa (UNIPA) and were acquired by UniPa+INGV+INETER collaboration as part of the DCO-DECADE program (https://deepcarboncycle.org/home-decade). Annual SO2 fluxes from the NASA Aura/OMI satellite were obtained from NASA Goddard Space Flight Center Global Sulfur Dioxide Monitoring webpage (https://so2.gsfc.nasa.gov/kml/OMI_Catalogue_Emissions_2005-2019.xls). MIROVA VRP data for Masaya were kindly provided by Diego Coppola (UniTo) (https://www.mirovaweb.it/). Computations for this research were performed on the Pennsylvania State University’s Institute for Computational and Data Sciences’ Roar supercomputer. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the views of the Institute for Computational and Data Sciences. The authors thank Judit Gonzalez-Santana for her helpful discussions and sharing of inversion codes, as well as Chuck Ammon, Peter La Femina, and Guido Cervone for their helpful discussions and feedback on an earlier version of this manuscript. The authors would also like to thank associate editor Nicole Métrich and executive editor Andrew Harris, Raphaël Grandin, and one anonymous reviewer for their detailed and constructive comments that have improved this paper.

Funding

This study was funded by National Aeronautics and Space Administration (NASA) Earth Surface and Interior (ESI) grant (NNX17AD70G) to Peter La Femina (Penn State) and Christelle Wauthier.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, as well as formal analysis and investigation. The first draft was written by KJS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kirsten J. Stephens.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial responsibility: N. Métrich

This paper constitutes part of a topical collection:

Open-vent volcanoes

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1092 KB)

Supplementary file2 (XLSX 88 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stephens, K.J., Wauthier, C. Spatio-temporal evolution of the magma plumbing system at Masaya Caldera, Nicaragua. Bull Volcanol 84, 18 (2022). https://doi.org/10.1007/s00445-022-01533-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-022-01533-z

Keywords

Navigation